College Of Engineering

University Of Anbar

رجامِية الأنجـيـار

Lecture 1
 MEASUREMENTS IN CHEMISTRY

2022-2023

Lecture Outline

1.1 Units of Measurement
1.2 Scientific Notation
1.3 Metric Prefixes
1.4 Significant Figures in Measurements
1.5 Calculations Involving Significant Figures
1.6 Writing Conversion Factor
1.7 Problem Solving in Chemistry - Dimensional Analysis
1.8 Density and Specific Gravity
1.9 Temperature Scale
1.10 Heat and Specific Heat

MEASUREMENTS IN CHEMISTRY

- Measurements are part of our daily lives. We measure our weights, driving distances, and gallons of gasoline. As a health professional you might measure blood pressure,
- temperature, pulse rate, drug dosage, or percentage of body fat.
- A measurement contains a number and a unit.
- A unit specifies the physical property and the size of a measurement, while the number indicates how many units are present. A number without a unit is usually meaningless.

1.1 Units of Measurement

In the United States most measurements are made with the English system of units which usually contain fractions (a collection of functionally unrelated units.)
The metric system is a decimal-based system of units of measurement which is used most often worldwide.
Around 1960, the international scientific organization adopted a modification of the metric system called International System or SI (from System International).

Quantity	English Unit	Metric Unit	SI Unit
Mass	pound (lb)	gram (g)	kilogram (kg)
Length	foot (ft)	meter (m)	meter (m)
Volume	quart (qt)	liter (L) demperature degree Fahrenheit $\left({ }^{\circ} \mathrm{F}\right)$ Energy calorie (cal)	calorie (cal)

1.2 Scientific Notation

Scientific notation is a common method used to represent very small or very large numbers conveniently. There are two parts to any number expressed in scientific notation, a coefficient, and a power of 10 . The number 683 is written in scientific notation as 6.83×10^{2}.
The coefficient is 6.83 and 10^{2} shows the power of 10 (the superscript 2 is called an exponent). A number less than one would contain a negative exponent. For example: the number 0.0075 is written as 7.5×10^{-3} (note the negative exponent).
The coefficient must always be a number greater than or equal to 1 but less than 10 or 1 coefficient < 10.

Worked Example 1-1

Express the following numbers in scientific notation:
a) 408.00
b) 0.007956

Solution

Apply the following:
Place the decimal point after the first nonzero digit in the number.
Indicate the number of places the decimal was moved using the power of 10 . If the decimal is moved to the left, the power of 10 is positive. If moved to the right, it is negative.
a) $4.0800 \times 10^{2} \quad($ coefficient $=4.0800$, exponent $=+2)$
b) $7.956 \times 10^{-3} \quad($ coefficient $=7.956$, exponent $=-3)$

Practice 1-1

Express each of the following values in scientific notation:
a) There are $33,000,000,000,000,000,000$ molecules of water in one milligram of water.
b) A single molecule of sucrose weighs 0.00000000000000000000057 g .

Answer
a) $3.3 \times 10^{19} \quad($ coefficient $=3.3$, exponent $=19)$
b) $5.7 \times 10^{-22}($ coefficient $=5.7$, exponent $=-22)$

- ractac 1-2

Convert each the following scientific notation to decimal notation.
a) 8.54×10^{3}
b) 6.7×10^{-5}
c) 1.29×10^{4}
d) 1.000×10^{-2}

Answer
a) 8540
b) $\mathbf{0 . 0 0 0 0 6 7}$
c) $\mathbf{1 2 9 0 0}$
d) 0.01000

Scientific Notation and Calculators

Numbers in scientific notation can be entered into most calculators using the EE or EXP key. As an example try 9.7×10^{3}.

1. Enter the coefficient (9.7) into calculator.
2. Push the EE (or EXP) key. Do NOT use the x (times) button.
3. Enter the exponent number (3).

Number to Enter	Method	Display Reads
9.7×10^{3}	9.7 EE or EXP 3	9.7^{03} or 9.7 E 03 or 9700

Now try 8.1×10^{-5} :

1. Enter the coefficient (8.1) into calculator.
2. Push the EE (or EXP) key. Do NOT use the x (times) button.
3. Enter the exponent number (5). Use the plus/minus (+/-) key to change its sign.

Number to Enter	Method	Display Reads
8.1×10^{-5}	8.1 EE or EXP $5+/-$	8.1^{-05} or $8.1 \mathrm{E}-05$

1.3 Metric Prefixes

The metric system is a decimal-based system of units of measurement used by most scientists worldwide.
In the metric system, a prefix can be attached to a unit to increase or decrease its size by factors (powers) of 10.

Prefix

\uparrow| tera- (T) | $10^{12}=1,000,000,000,000$ |
| :--- | :--- |
| giga- (G) | $10^{9}=1,000,000,000$ |
| mega- (M) | $10^{6}=1,000,000$ |
| kilo- (k) | $10^{3}=1,000$ |

deci- (d)	$10^{-1}=0.1$
centi- (c)	$10^{-2}=0.01$
milli- (m)	$10^{-3}=0.001$
micro- (μ)	$10^{-6}=0.000001$
nano- (n)	$10^{-9}=0.000000001$
pico- (p)	$10^{-12}=0.000000000001$

Value
$10^{12}=1,000,000,000,000$
$10^{9}=1,000,000,000$
$10^{6}=1,000,000$
$10^{3}=1,000$
$10^{-1}=0.1$
$10^{-2}=0.01$
$10^{-3}=0.001$
$10^{-6}=0.000001$
$10^{-9}=0.000000001$
$10^{-12}=0.000000000001$

Give the metric prefix that corresponds to each of the following
a) $1,000,000,000$
b) 10^{-6}
c) 1000
d) 0.01
e) 10^{-9}
f) 10^{12}

Answer
a) giga
b) micro
c) kilo
d) centi
e) nano
f) tera

1.4 Significant Figures in Measurements

- A student is asked to determine the mass of a small object using two different balances available in the lab. The lower priced model reports masses to within $\pm 0.01 \mathrm{~g}$ (one-one hundredth), while the higher priced one reports to within $\pm 0.0001 \mathrm{~g}$ (one-ten thousandth).
- The student measures the mass three times on each balance and completes the following table.

	First balance	Second balance
Three measurements	$\mathbf{2 . 1 6 , 2 . 1 4 , \mathbf { 2 . 1 5 } \mathbf { g }}$	$\mathbf{2 . 1 5 3 8 , 2 . 1 5 3 9 , 2 . 1 5 3 7 \mathrm { g }}$
Average	$\mathbf{2 . 1 5} \mathbf{g}$	$\mathbf{2 . 1 5 3 8} \mathbf{g}$
Reproducibility	$\pm 0.01 \mathbf{g}$	$\pm 0.0001 \mathbf{g}$
Which digit is the "uncertain digit" in the average?	The last digit; 5	The last digit; 8
Which digits are "certain digits" in the average?	$\mathbf{2 , 1}$	$\mathbf{2 , 1 , 5 , 3}$
How many significant digits are in the average?	Three significant digits	Five significant digits

- Signiticant tigures (sig tiigs) are the digits that are known with certainty plus one digit that is uncertain. All nonzero digits in measurements are always significant.
- Are zeroes significant?
- YES: zeros between nonzero digits (20509).
- YES: zeros at the end of a number when a decimal point is written (3600.).
- NO: zeros at the end of a number when no decimal point is written (3600).
- NO: zeros at the beginning of a number (0.0047).

Worked Example 1-2

How many significant figures does each number have?
a) 0.0037
b) 600 .
c) 93,000
d) 2.08×10^{-5}
e) 600
f) 58.00
g) 4010049
h) 1.700×10^{2}
i) 4.0100×10^{6}

Solution

	sf		sf		sf
0.0037	$\mathbf{2}$	600	$\mathbf{3}$	93,000	$\mathbf{2}$
2.08×10^{-5}	$\mathbf{3}$	600	$\mathbf{1}$	58.00	$\mathbf{4}$
4010049	$\mathbf{7}$	1.700×10^{2}	$\mathbf{4}$	4.0100×10^{6}	$\mathbf{5}$

Significant Figures in "Exact Numbers"

- Exact numbers have an unlimited number of significant figures. Exact numbers are obtained by counting items or by definition.
- Counting: 24 students mean $24.0000000 \ldots$ students. 8 pennies means 8.0000... pennies.
- Definition: $1 \mathrm{~m}=100 \mathrm{~cm}$ means $1.00000 \ldots . \mathrm{m}=100.000000 \ldots . \mathrm{cm}$

Example for lecture -1
 What are the significant figures rules?

- To determine what numbers are significant and which aren't, use the following rules:

1. The zero to the left of the decimal value less than 1 is not significant.
2. A final zero or trailing zeros in the decimal portion ONLY are significant.
3. Zeros between non zero numbers are significant.
4. All non zero numbers are significant.

- If a number has more numbers than the desired numbers of significant digits, the number is rounded. For example, 432,500 is 433,000 to 3 significant digits.
- Zeros at the end of numbers which are not significant but are not removed, as removing would affect the value of the number. In the above example, cannot remove 000 in 432,000 unless changing the number into scientific notation.
- Rule 1: Non-zero digits are always significant.
- Hence a number like 26.38 would have four significant figures and 7.94 would have three. The problem comes with numbers like 0.00980 or 28.09.

Rule 2: Any zeros between two significant digits are significant.

Suppose you had a number like 406. By the first rule, the 4 and the 6 are significant. However, to make a measurement decision on the 4 (in the hundred's place) and the 6 (in the unit's place), you HAD to have made a decision on the ten's place. The measurement scale for this number would
have hundreds and tens marked with an estimation made in the unit's place. Like this:

- Rule 3: A final zero or trailing zeros in the decimal portion ONLY are significant.
- This rule causes the most difficulty with students. Here are two examples of this rule with the zeros this rule affects in boldface:
- 0.00500
- 0.03040
- Here are two more examples where the significant zeros are in boldface:
- 2.30×10^{-5}
- 4.500×10^{12}

What Zeros are Not Discussed Above

$$
\text { Zero Type \# } 1 \text { : Space holding zero on numbers less than one. }
$$

Here are the first two numbers from just above with the digits that are NOT significant in boldface:

$$
0.03040
$$

These zeros serve only as space holders. They are there to put the decimal point in its correct location. They DO NOT involve measurement decisions. Upon writing the numbers in scientific notation (5.00×10^{-3} and 3.040×10^{-2}), the non-significant zeros disappear.

Zero Type \#2: the zero to the left of the decimal point on numbers less than one.

When a number like 0.00500 is wiitten, the very first zero (to the left of the decimal point) is put there by convention. Its sole function is to communicate unambiguously that the decimal point is a deciaml point. If the number were written like this, 00500 , there is a possibility that the decimal point might be mistaken for a period. Many students omit that zero. They should not.

Zero Type \#3: trailing zeros in a whole number.

- 200 is considered to have only ONE significant figure while 25,000 has two.
- This is based on the way each number is written. When whole number are written as above, the zeros, BY DEFINITION, did not require a measurement decision, thus they are not significant.
- However, it is entirely possible that 200 really does have two or three significnt figures. If it does, it will be written in a different manner than 200.
- Typically, scientific notation is used for this purpose. If 200 has two significant figures, then 2.0×10^{2} is used. If it has three, then 2.00×10^{2} is used. If it had four, then 200.0 is sufficient.

See rule \#2 above.
How will you know how many significant figures are in a number like 200? In a problem like below, divorced of all scientific context, you will be told. If you were doing an experiment, the context of the experiment and its measuring devices would tell you how many significant figures to report to people who read the report of your work.

Zero Type \#4: leading zeros in a whole number. 00250 has two significant figures. $005.00 \times 10^{-4} 4$ has three.

1.5 Calculations Involving Significant Figures

Rules for Rounding off Numbers
If the first digit to be deleted is 4 or less, leave the last reported digit unchanged.
If the first digit to be deleted is 5 or greater, increase the last reported digit by one.
In some cases you need to add significant zeros. The number 2 , reported in four significant figures, is 2.000.

Pramtce 1-4

Round off each of the following to three significant figures.
a) 9.174
b) 9.175
c) 9.176
d) 5
e) 0.0040
f) 8000
g) 2.4×10^{-5}
h) 670

Answer
a) 9.174 (9.17)
b) $9.175(9.18)$
c) $9.176(9.18)$
d) $5(5.00)$
e) $0.0040(0.00400)$
f) $8000\left(\mathbf{8 . 0 0} \times \mathbf{1 0}^{\mathbf{3}}\right)$
g) $2.4 \times 10^{-5}\left(2.40 \times 10^{-5}\right)$
h) 670 (670.)

Rules for Rounding off in Calculations

A. Multiplication and Division

The answer carries the same number of significant figures as the factor with the fewest significant figures

Practae 1-b

Perform each of the following calculations to the correct number of significant figures.
a) 33.56×1.9483
b) $\left(2.50 \times 10^{-3}\right) \times\left(1.8500 \times 10^{5}\right)$
c) $47.5301 \div 2.30$
d) $\left(6.56 \times 10^{10}\right) \div\left(7.8 \times 10^{9}\right)$

Answer
a) $33.56 \times 1.9483=\mathbf{6 5 . 3 8}$
b) $\left(2.50 \times 10^{-3}\right) \times\left(1.8500 \times 10^{5}\right)=4.63 \times 10^{2}$
c) $47.5301 \div 2.30=\mathbf{2 0 . 7}$
d) $\left(6.56 \times 10^{10}\right) \div\left(7.8 \times 10^{9}\right)=8.4$

B. Addition and Subtraction

The answer should have the same number of decimal places as the quantity with the fewest decimal places.

Practre 1-

Perform each of the following calculations to the correct number of significant figures:
a) $73.498+2.2$
b) $63.81+205.4$
c) $191.000-188.0$
d) $124.08-39.1740$
e) $\left(6.8 \times 10^{-2}\right)+\left(2.04 \times 10^{-2}\right)$
f) $\left(5.77 \times 10^{-4}\right)-\left(3.6 \times 10^{-4}\right)$

Answer
a) $73.498+2.2=\mathbf{7 5 . 7}$
b) $63.81+205.4=\mathbf{2 6 9 . 2}$
c) $191.000-188.0=\mathbf{3 . 0}$
d) $124.08-39.1740=\mathbf{8 4 . 9 1}$
e) $\left(6.8 \times 10^{-2}\right)+\left(2.04 \times 10^{-2}\right)=$
f) $\left(5.77 \times 10^{-4}\right)-\left(3.6 \times 10^{-4}\right)=$
8.8×10^{-2}
2.2×10^{-4}

Question 1 How many significant figures are in the following values? a. $4.02 \times 10-9$ b. 0.008320 c. 6×105 d. 100.0

Question 2 How many significant figures are in the following values? a. 1200.0 b. 8.00 c. 22.76 x 10-3 d. 731.2204
Question 3 Which value has more significant figures? $2.63 \times 10-6$ or 0.0000026
Question 4 Express 4,610,000 in scientific notation. a. with 1 significant figure b. with 2 significant figures c . with 3 significant figures d . with 5 significant figures
Question 5 Express 0.0003711 in scientific notation. a. with 1 significant figure b. with 2 • significant figures c . with 3 significant figures d . with 4 significant figures
Question 6 Perform the calculation with the correct number of significant digits. $22.81+$ 2.2457

Question 7 Perform the calculation with the correct number of significant digits. 815.991 x 324.6

Question 8 Perform the calculation with the correct number of significant digits. $3.2215+1.67$ $+2.3$
Question 9 Perform the calculation with the correct number of significant digits. 8.442-8.429
Question 10 Perform the calculation with the correct number of significant digits. 27/3.45

Answers 1. a. 3
b. 4 c. 1 d. 4
2. a. 5 b. 3
c. 4 d. 7
3. $2.63 \times 10-6$
4. a. 5×106 b. 4.6×106 c. 4.61×106 d. 4.6100×106
5. a. $4 \times 10-4$
b. $3.7 \times 10-4$
c.
$.71 \times 10-4$ d. $3.711 \times 10-4$
6. 25.06
7. 2.649×105
$\begin{array}{lll}\text { 8. } 7.2 & 9.013 & 10.7 .8\end{array}$

1.6 Writing Conversion Factors

Many problems in chemistry require converting a quantity from one unit to another. To perform this conversion, you must use a conversion factor or series of conversion factors that relate two units. This method is called dimensional analysis. Any equality can be written in the form of a fraction called a conversion factor. A conversion factor is easily distinguished from all other numbers because it is always a fraction that contains different units in the numerator and denominator.
Converting kilograms to pounds can be performed using the equality $1 \mathrm{~kg}=2.20 \mathrm{lb}$. The two different conversion factors that may be written for the equality are shown below. Note the different units in the numerator and denominator, a requirement for all conversion factors.

Conversion Factors: $\frac{\text { Numerator }}{\text { Denominator }} \quad \frac{1 \mathrm{~kg}}{2.20 \mathrm{lb}}$ or $\frac{2.20 \mathrm{lb}}{1 \mathrm{~kg}}$
Some common units and their equivalents are listed in Table 1.1. You should be able to use the information, but you will not be responsible for memorizing the table. The Table
will be given to you during quizzes and exams.

Table 1.1 Some Common Units and Their Equivalents

Length	$1 \mathrm{~m}=100 \mathrm{~cm}$	$1 \mathrm{~m}=1000 \mathrm{~mm}$	$1 \mathrm{~cm}=10 \mathrm{~mm}$	$1 \mathrm{~km}=1000 \mathrm{~m}$	$1 \mathrm{~nm}=10^{-9} \mathrm{~m}$
	$1 \AA=10^{-10} \mathrm{~m}$	$1 \mathrm{in}=2.54 \mathrm{~cm}$	$1 \mathrm{ft}=30.48 \mathrm{~cm}$	$1 \mathrm{mi}=1.61 \mathrm{~km}$	$1 \mathrm{yd}=0.91 \mathrm{~m}$
	$1 \mathrm{ft}=12 \mathrm{in}$.				
Mass	$1 \mathrm{~kg}=1000 \mathrm{~g}$	$1 \mathrm{~g}=1000 \mathrm{mg}$	$1 \mathrm{lb}=454 \mathrm{~g}$	$1 \mathrm{~kg}=2.20 \mathrm{lb}$	$1 \mathrm{oz}=28.35 \mathrm{~g}$
	$11 \mathrm{~b}=16 \mathrm{oz}$				
Volume	$1 \mathrm{~L}=1000 \mathrm{~mL}$	$1 \mathrm{~mL}=1 \mathrm{~cm}^{3}$	$1 \mathrm{qt}=0.946 \mathrm{~L}$	$1 \mathrm{gal}=3.78 \mathrm{~L}$	
Energy	$1 \mathrm{cal}=4.18 \mathrm{~J}$				

Length

1.00 inch $=2.54$ centimeters
1.00 meter $=39.4$ inches
1.00 kilometer $=0.621$ mile

Mass

1.00 pound $=454$ grams
1.00 kilogram $=2.20$ pounds
1.00 ounce $=28.3$ grams

Volume
1.00 quart $=0.946$ liter
1.00 liter $=0.265$ gallon
1.00 milliliter $=0.034$ fluid ounce

1.00 in.	2.54 cm
2.54 cm	1.00 in .
39.4 in.	1.00 m
1.00 m	39.4 in.
0.621 mi	1.00 km
1.00 km	0.621 mi
1.00 lb	454 g
454 g	1.00 lb
2.20 lb	1.00 kg
1.00 kg	2.20 lb
1.00 oz	28.3 g
28.3 g	1.00 oz
1.00 qt	0.946 L
0.946 L	1.00 qt
0.265 gal	1.00 L
1.00 L	0.265 gal
0.034 fl oz	1.00 mL
1.00 mL	0.034 fl oz

Worked Example 1-3

Write conversion factors for each of the following equalities or statements:
a) $1 \mathrm{~g}=1000 \mathrm{mg}$
b) 1 foot $=12$ inches
c) 1 quart $=0.946$ liter
d) The accepted toxic dose of mercury is 0.30 mg per day.

Solution

Equality	Conversion factor	Conversion factor
$1 \mathrm{~g}=1000 \mathrm{mg}$	$\frac{1 \mathrm{~g}}{1000 \mathrm{mg}}$	$\frac{1000 \mathrm{mg}}{1 \mathrm{~g}}$
1 foot $=12$ inches	$\frac{1 \mathrm{ft} .}{12 \mathrm{in} .}$	$\frac{12 \mathrm{in} .}{1 \mathrm{ft} .}$
1 quart $=0.946$ liter	$\frac{1 \mathrm{qt.}}{0.946 \mathrm{~L}}$	$\frac{0.946 \mathrm{~L}}{1 \mathrm{qt} .}$
The accepted toxic dose of mercury is 0.30 mg per day.	$\frac{0.30 \mathrm{mg}}{1 \text { day }}$	$\frac{1 \text { day }}{0.30 \mathrm{mg}}$

1.7 Problem Solving in Chemistry - Dimensional Analysis

Dimensional analysis is a general method for solving numerical problems in chemistry. In this method we follow the rule that when multiplying or dividing numbers, we must also multiply or divide units.
Solving problems by dimensional analysis is a three-step process:

1. Write down the given measurement; number with units.
2. Multiply the measurement by one or more conversion factors. The unit in each denominator must cancel (match) the preceding unit in each numerator.
3. Perform the calculation and report the answer to the proper significant figures based on numbers given in the question (data), not conversion factors used.

Worked Example 1-4

Convert 0.455 km to meters.

Solution

To convert kilometers to meters, we could use the following equality:

$$
1 \mathrm{~km}=1000 \mathrm{~m}(\text { See Table } 1.1)
$$

The corresponding conversion factors would be:

We select the conversion factor to cancel kilometers, leaving units of meters.
$0.455 \mathrm{Nm} \times \frac{1000 \mathrm{~m}}{1 \mathrm{Nm}}=455 \mathrm{~m}$
The number of significant figures in your answer reflect 0.455 km . The exact conversion factor does not limit the number of significant figures in your answer.

Worked Example 1-5

Convert 4.5 weeks to minutes.
Solution

(45360 rounded to 2 sig figs.)

Worked Example 1-6

Convert $2.7 \mathrm{~g} / \mathrm{mL}$ to lb / L.
Solution
We need two conversion factors: one to convert g to lb and the other to convert mL to L . We know that $1 \mathrm{lb}=454 \mathrm{~g}$ and $1 \mathrm{~L}=1000 \mathrm{~mL}$ (See Table 1.1)

Remember that the number of significant figures in your answer reflect 2.7. The conversion factors do not limit the number of significant figures in your answer.

Practice 1-7

Perform each of the following conversions:
a) Convert 14.7 lb to ounces.
b) Convert 19.8 lb to kilograms.
c) Convert $23 \mathrm{~m} / \mathrm{sec}$ to $\mathrm{mi} / \mathrm{hr}$.

Answer

1.8 Density and Specific Gravity

Density is the ratio of the mass of a substance to the volume occupied by that substance.

Density is expressed in different units depending on the phase (form) of the substance. Solids are usually expressed in grams per cubic centimeter ($\mathrm{g} / \mathrm{cm}_{3}$), while liquids are commonly grams per milliliter $(\mathrm{g} / \mathrm{mL})$. The density of gases is usually expressed as grams per liter (g / L)

Worked Example 1-7

If 10.4 mL of a liquid has a mass of 9.142 g , what is its density?
Solution

$$
\mathrm{d}=\frac{\mathrm{m}}{\mathrm{~V}}
$$

$$
\mathrm{d}=\frac{9.142 \mathrm{~g}}{10.4 \mathrm{~mL}}=0.879 \mathrm{~g} / \mathrm{mL}
$$

Density can be used as a conversion factor that relates mass and volume, note the different units in the numerator and denominator. Densities can be used to calculate mass if volume is given or calculate volume given mass. For example, we can write two conversion factors for a given density of 1.05 g / mL :
$\frac{1.05 \mathrm{~g}}{1.00 \mathrm{~mL}} \quad$ or $\quad \frac{1.00 \mathrm{~mL}}{1.05 \mathrm{~g}}$

WOFKed Exempre 1-:

The density of a saline solution is $1.05 \mathrm{~g} / \mathrm{mL}$. Calculate the mass of a 377.0 mL sample.

Solution

$$
\mathrm{d}=\frac{\mathrm{m}}{\mathrm{~V}} \quad \mathrm{~m}=377.0 \mathrm{~mL} \mathrm{x} \frac{1.05 \mathrm{~g}}{1.00 \mathrm{~mL}}=396 \mathrm{~g}
$$

Fragtae 1-:

The density of rubbing alcohol is $0.786 \mathrm{~g} / \mathrm{mL}$. What volume of rubbing alcohol would you use if you needed 32.0 g ?

Answer
We use the density as a conversion factor:
1.00 mL
$\mathrm{V}=32.0 \mathrm{~g} \mathrm{x} \quad=40.7 \mathrm{~mL}$
0.786 g

Specific Gravity is the ratio of the density of liquid to the density of water at $4^{\circ} \mathrm{C}$, which is $1.00 \mathrm{~g} / \mathrm{mL}$. Since specific gravity is a ratio of two densities, the units cancel.

$$
\begin{equation*}
\text { specific gravity }=\frac{\text { density of sample }(\mathrm{g} / \mathrm{mL})}{\text { density of water }(\mathrm{g} / \mathrm{mL})} \tag{Nounits}
\end{equation*}
$$

An instrument called a hydrometer is used to measure the specific gravity of liquids.

Worked Example 1-9

What is the specific gravity of jet fuel if the density is $0.775 \mathrm{~g} / \mathrm{mL}$?
Solution

$$
\text { specific gravity }=\frac{0.775 \mathrm{~g} / \mathrm{mL}}{1.00 \mathrm{~g} / \mathrm{mL}}=0.775
$$

Pracice 1-9

A 50.0 mL sample of blood has a mass of 53.2 g .
a) Calculate the density of the blood.
b) Calculate the specific gravity of the blood.

Answer

1.9 Temperature Scales

Temperature, reported in Fahrenheit $\left({ }^{\circ} \mathrm{F}\right)$ or Celsius $\left({ }^{\circ} \mathrm{C}\right)$, is used to indicate how hot or cold an object is. The SI unit for reporting temperature is Kelvin (K)

See the comparison of the three scales:

Freezing point of water	Boiling point of water	Normal body temperature
$32^{\circ} \mathrm{F}$	$212^{\circ} \mathrm{F}$	$98.6^{\circ} \mathrm{F}$
$0^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$	$37^{\circ} \mathrm{C}$
273 K	373 K	310 K

The following formulas show the conversions:
Fahrenheit to Celsius: ${ }^{\circ} \mathrm{C}=\frac{\left({ }^{\circ} \mathrm{F}-32\right)}{1.8}$
Celsius to Fahrenheit: ${ }^{\circ} \mathrm{F}=1.8^{\circ} \mathrm{C}+32$
Celsius to Kelvin: $\quad \mathrm{K}={ }^{\circ} \mathrm{C}+273$

Fractae 1-10

Complete the following table.

Fahrenheit	Celsius	Kelvin
$88^{\circ} \mathrm{F}$		
	$-55^{\circ} \mathrm{C}$	
		469 K

Answer

Fahrenheit	Celsius	Kelvin
$88^{\circ} \mathrm{F}$	$\mathbf{3 1}{ }^{\circ} \mathrm{C}$	$\mathbf{3 0 4} \mathbf{K}$
$-\mathbf{6} 7^{\circ} \mathbf{F}$	$-55^{\circ} \mathrm{C}$	$\mathbf{2 1 8} \mathbf{K}$
$\mathbf{3 8 5}{ }^{\circ} \mathbf{F}$	$\mathbf{1 9 6}^{\circ} \mathbf{C}$	469 K

1.10 Heat and Specific Heat

Heat and temperature are both a measure of energy. Heat, however, is not the same as temperature. Heat measures the total energy, whereas temperature measures the average energy. A gallon of hot water at 200 F has much more heat energy than a teaspoon of hot water at same temperature. Heat can be measured in various units. The most commonly used unit is calorie (cal). The calorie is defined as the amount of heat required to raise the temperature of 1 gram of water by $1^{\circ} \mathrm{C}$. This is a small unit, and more often we use kilocalories (kcal).

$$
1 \mathrm{kcal}=1000 \mathrm{cal}
$$

Nutritionist use the word "Calorie" (with a capital "C") to mean the same thing as kilocalorie.

$$
1 \mathrm{Cal}=1000 \mathrm{cal}=1 \mathrm{kcal}
$$

The unit of energy in SI unit is joule (pronounced "jool"), which is about four times as big as the calorie:

$$
1 \mathrm{cal}=4.184 \mathrm{~J}
$$

- How to convert joules to calories
- How to convert energy in joules (J) to calories (cal).
- Small \& large calories
- Small calorie (cal) is the energy needed to increase 1 gram of water by $1^{\circ} \mathrm{C}$ at a pressure of 1 atmosphere.
- Large calorie (Cal) is the energy needed to increase 1 kg of water by $1^{\circ} \mathrm{C}$ at a pressure of 1 atmosphere.
- Large calorie is also called food calorie and is used as a unit of food energy.
- How to convert from joules to calories
- Joules to thermochemical calories
- $1 \mathrm{cal}_{\mathrm{th}}=4.184 \mathrm{~J}$
- The energy in thermochemical calories $E_{(\text {catth }}$ is equal to the energy in joules $E_{(J)}$ divided by 4.184:
- $E_{\text {(cal) }}=E_{(I)} / 4.184$
- Example
- Convert 600 joules to thermochemical calories.
- $E_{\text {(cal) }}=600 \mathrm{~J} / 4.184=143.4 \mathrm{cal}_{\mathrm{th}}$
- Joules to $15^{\circ} \mathrm{C}$ calories
- $1 \mathrm{cal}_{15}=4.1855 \mathrm{~J}$
- The energy in $15^{\circ} \mathrm{C}$ calories $E_{\text {(cal15) }}$ is equal to the energy in joules $E_{(J)}$ divided by 4.1855:
- $\quad E_{\text {(cal15) }}=E_{(\mathrm{J})} / 4.1855$
- Example
- Convert 600 joules to $15^{\circ} \mathrm{C}$ calories.
- $E_{\text {(cal15) }}=600 \mathrm{~J} / 4.1855=143.352 \mathrm{cal}_{15}$

Specific Heat

Substances change temperature when heated, but not all substances have their temperature raised to the same extent when equal amounts of heat are added.

Specific Heat is the amount of heat required to raise the temperature of one gram of a substance by one degree Celsius. It is measured in units of $\mathrm{cal} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$ or $\mathrm{J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$.
(Recall; 1 cal is required to raise the temperature of 1 gram of water by $1^{\circ} \mathrm{C}$, the specific heat of water is therefore: $1.00 \mathrm{cal} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$, or $4.184 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$).

Specific heats for some substances in various states are listed in the following table. A substance with a high specific heat is capable of absorbing more heat with a small temperature change than a substance with lower specific heat.

	Substance	Specific Heat $\left(\mathbf{J} / \mathbf{g} \cdot{ }^{\circ} \mathbf{C}\right)$
Solids		
	gold	0.128
	copper	0.385
	aluminum	0.903
	Lice	2.06
	mercury	0.138
	methanol	1.77
	ethanol	2.42
	water	4.18
	argon	
	oxygen	0.518
	nitrogen	0.915
	steam	1.041
	2.03	

We can calculate the amount of heat gained or lost by a substance using its specific heat, its measured mass, and the temperature change.

Amount of heat	$=$ mass	x	specific heat		x	change in temperature*
q	$=\mathrm{m}$	x	SH	x	$\left(\mathrm{T}_{\text {final }}-\mathrm{T}_{\text {initial }}\right)$	

* The temperature change could also be written as Δ (delta T$)$.

If any three of the four quantities in the equation are known, the fourth quantity can be calculated.

Worked Example 1-10

Determine the amount of heat that is required to raise the temperature of 7.400 g of water from $29.0^{\circ} \mathrm{C}$ to $46.0^{\circ} \mathrm{C}$. The specific heat of water is $4.18 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$.

Solution

$$
\begin{aligned}
& \mathrm{q}=\mathrm{m} \times \mathrm{SH} \times \Delta \mathrm{T} \\
& \mathrm{q}=7.400 \mathrm{~g} \times 4.18 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C} \times 17.0^{\circ} \mathrm{C}=526 \mathrm{~J}
\end{aligned}
$$

-ractre 1-11

What mass of lead is needed to absorb 348 J of heat if the temp of the sample rises from $35.2^{\circ} \mathrm{C}$ to $78.0^{\circ} \mathrm{C}$? The specific heat of lead is $0.129 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$.

Answer

```
q}=m\timesSH\times\Delta
```

so $\quad \mathbf{m}=$
SH $\times \Delta T$
348 J
$\mathbf{m}=$

$$
=63.0 \mathrm{~g}
$$

$$
0.129 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C} \times 42.8^{\circ} \mathrm{C}
$$

Practac 1-12

It takes 87.6 J of heat to raise the temp of 51.0 g of a metal by $3.9^{\circ} \mathrm{C}$. Calculate the specific heat of the metal.

Answer

$$
\begin{aligned}
& \mathrm{q}=\mathrm{m} \times \mathrm{SH} \times \Delta \mathrm{T} \\
& \text { so } \mathrm{SH}=\begin{array}{c}
\mathrm{q} \\
\mathrm{~m} \times \Delta \mathrm{T} \\
\mathrm{SH}= \\
87.6 \mathrm{~J} \\
51.0 \mathrm{~g} \times 3.9^{\circ} \mathrm{C}
\end{array}=0.44 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}
\end{aligned}
$$

Mractae 1-13

$4.00 \times 10^{3} \mathrm{~J}$ of energy is transferred to 56.0 g of water at $19^{\circ} \mathrm{C}$. Calculate the final temperature of water. $\mathrm{SH}=4.18 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$.

Answer

$$
\begin{aligned}
& \Delta \mathrm{T}=\frac{4.00 \times 10^{3} \mathrm{~J}}{56 .----------18 \mathrm{~g} \times 4.18 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}}=17.1^{\circ} \mathrm{C} \\
& \mathrm{~T}=\mathrm{T}_{\text {final }}-\mathrm{T}_{\text {initial }} \quad 17.1^{\circ} \mathrm{C}=\mathrm{T}_{\mathrm{f}}-19^{\circ} \mathrm{C} \quad \mathrm{~T}_{\mathrm{f}}=36^{\circ} \mathrm{C}
\end{aligned}
$$

Homework Problems

1.1 Complete the following table.

Decimal notation	Scientific notation	Number of significant figures
400,000		
0.000600		
$21,995,000$		
0.05050		
	7.28×10^{3}	
	3.608×10^{-5}	
	9.4090×10^{4}	
	1.5×10^{-3}	

1.2 Perform the following calculations to correct number of significant figures.
a. $4.6 \times 0.00300 \times 193$
b. $8.88 \div 99.40$
c. $\left(7.120 \times 10^{-3}\right) \div\left(6.000 \times 10^{-5}\right)$
d. $\left(5.92 \times 10^{3}\right) \times 3.87 \div 100$
1.3 Perform the following calculations to correct number of significant figures.
a. $102-5.31-0.480$
b. $\left(3.42 \times 10^{-4}\right)+\left(5.007 \times 10^{-4}\right)$
c. $7.8-\left(8.3 \times 10^{-2}\right)$
d. $\left(3.8 \times 10^{6}\right)-\left(8.99 \times 10^{6}\right)$
1.4 Perform the following conversions. Show your set ups.
a. 683 nanometer (nm) to angstrom (\AA)
b. $520 \mathrm{mi} / \mathrm{h}$ to $\mathrm{m} / \mathrm{sec}$
c. $0.714 \mathrm{~g} / \mathrm{cm}_{3}$ to $\mathrm{lb} / \mathrm{ft}_{3}$
d. $-164^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{F}$
1.5 A physician has ordered 37.5 mg of a particular drug over 15 minutes. If the drug was available as $2.5 \mathrm{mg} / \mathrm{mL}$ of solution, how many mL would you need to give every 15 seconds?
1.6 What is the density of a metal sample if a 15.12 g sample is added into a graduated cylinder increased the liquid level from 35.00 mL to 40.60 mL ?
1.7 The density of copper is $8.96 \mathrm{~g} / \mathrm{cm}_{3}$. You have three different solid samples of copper. One is rectangular with dimensions 2.3 cm x $3.1 \mathrm{~cm} \times 8.0 \mathrm{~cm}$. The second is a cube with edges of 3.8 cm . The third is a cylinder with a radius of 1.5 cm and a height of 8.4 cm . Calculate the mass of each sample
1.8 A $50.00-\mathrm{g}$ sample of metal at $78.0^{\circ} \mathrm{C}$ is dropped into cold water. If the metal sample cools to $17.0^{\circ} \mathrm{C}$ and the specific heat of metal is $0.108 \mathrm{cal} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$, how much heat is released?

ANY QUESTIONS??

College Of Engineering

University Of Anbar
ansiolla

Dept. of Chem. \& Petrochemical Engineering
Subject : Chemistry
First Stage

Lecture 3
 Atoms, Molecules and Ions

Lecturer
Dr. Mohamad Jasim

2022-2023

Lecture Outline

- 2.1 The Atomic Theories
- 2.2 The structure of the atom
- 2.3 Atomic number, mass number and isotopes
- 2.4 The periodic table
- 2.5 Molecules and ions
- 2.6 Chemical formula
- 2.7 Naming compounds

THE EVOLUTION OF THE ATOMIC MODEL

Dalton's Atomic Theory

1. Elements are composed of extremely small particles called atoms. Atoms of the same element all have the same size, mass, and chemical properties. The atoms of one element are different from the atoms of all other elements.
2. Compounds are composed of atoms of two or more elements. In any compound, the ratio of the numbers of atoms of any two of the elements present is either an integer or a simple fraction.
3. A chemical reaction involves only the separation, combination, or rearrangement of atoms; it does not result in their creation or destruction.
atom of the element oxygen
oms of a given element are identical, but the atoms of one e fferent from the atoms of all other elements.

\bigcirc Oxygen

Nitro

s of one element cannot be changed into atoms of a differer emical reactions; atoms are neither created nor destroyed in ons.
4. Compounds are formed when atoms of mo element combine; a given compound alway same relative number and kind of atoms.

Dalton's Atomic Theory

$\mathrm{H}_{2} \mathrm{O}$

Law of Definite Proportions
-Different samples of the same compound always contain their elements in a definite proportion by mass.
-Compounds contain fixed proportions of their constituent elements. These proportions do not change, regardless of the different methods of preparing the compound.

Dalton's Atomic Theory

Carbon monoxide
Carbon dioxide

Law of Multiple Proportions
-In different compounds of the same elements, the various masses of one element that combine with a fixed mass of another element are related by small whole-number ratios.

Dalton's Atomic Theory

Atoms of element X

Atoms of element Y

Compounds of elements X and Y
$8 X_{2} Y$

Law of Conservation of Mass

- Matter is neither created nor destroyed

The Modern View of Atomic Structure

Atom- the basic unit of an element that can enter into chemical combination (extremely small and indivisible)

Three subatomic particles - electrons , protons, and neutrons.

Thomson Cathode Ray Tube experiment

- The cathode ray consist of negatively charged particles found in all matter
- Thomson together with Millikan concluded that the mass of an e- is exceedingly small $\left(e^{-}\right.$mass $\left.=9.10 \times 10^{-28} \mathrm{~g}\right)$.

Three types of rays produced by decay of radioactive substances such as "Uranium"..
(i) Alpha (α) rays..positively charged particles (α) particles.. deflected by positively charged plate
(ii) Beta (β) rays..electrons..deflected by negatively charged plate
(iii) Gamma (γ) rays..high-energy rays..no charge and are not affected by an external field.

Thomson's Model

- a spherical atom composed of diffuse, positively charged matter, in which e- is embedded like a "raisin in a plum pudding".

Positive charge spread over the entire sphere

Rutherford's gold foil α-scattering experiment

Source of

alpha particles

Atoms of gold foil

Ernest Rutherford Model:

 Rutherford discovered the nucleus of the atom in 1911

Rutherford's Model of the Atom

1. atoms positive charge is concentrated in the nucleus
2. proton (p) has opposite (+) charge of electron (-)
3. mass of p is $1840 \times$ mass of $e^{-}\left(1.67 \times 10^{-24} \mathrm{~g}\right)$

atomic radius $\sim 100 \mathrm{pm}=1 \times 10^{-10} \mathrm{~m}$ nuclear radius $\sim 5 \times 10^{-3} \mathrm{pm}=5 \times 10^{-15} \mathrm{~m}$

Chadwick's Experiment (1932)

Hatoms - 1 p; He atoms - 2 p mass He /mass H should $=2$ measured mass $\mathrm{He} /$ mass $\mathrm{H}=4$

> neutron (n) is neutral $($ charge $=0)$
> n mass $\sim \mathrm{p}$ mass $=1.67 \times 10^{-24} \mathrm{~g}$

TABLE 2.1 Mass and Charge of Subatomic Particles

Charge

Particle	Mass $\mathbf{(g)}$	Coulomb	Charge Unit
Electron*	9.10938×10^{-28}	-1.6022×10^{-19}	-1
Proton	1.67262×10^{-24}	$+1.6022 \times 10^{-19}$	+1
Neutron	1.67493×10^{-24}	0	0

*More refined measurements have given us a more accurate value of an electron's mass than Millikan's.
$\operatorname{mass} p \approx$ mass $n \approx 1840 \times$ mass e^{-}

Atomic number, Mass number and Isotopes

Atomic number $(\mathrm{Z})=$ number of protons in nucleus
Mass number $(\mathrm{A})=$ number of protons + number of neutrons $=$ atomic number $(Z)+$ number of neutrons
Isotopes are atoms of the same element (X) that have the same atomic number but different mass numbers
$\underset{\text { Atomic Number } \longrightarrow \mathrm{Z}}{\text { Mass Number }} \mathrm{X} \longleftarrow$ Element Symbol
Mass Number

${ }_{11}^{23} \mathrm{Na} \longleftarrow$ Element symbol
Atomic Number $\rightarrow{ }^{11}$,
${ }_{1}^{1} \mathrm{H}$
${ }_{1}^{2} \mathrm{H}$ (D)
${ }_{1}^{3} \mathrm{H}(\mathrm{T})$
235
92
${ }_{92}^{238} U_{18}$

The Isotopes of Hydrogen

Isotope	Atomic Number	Number of protons	Number of Neutrons	Number of electrons	mass (amu)
Hydrogen-1	1	1	0	1	1
Hydrogen-2 (deuterium)	1	1	1	1	2
Hydrogen-3 (tritium)	1	1	2	1	3

How many protons, neutrons, and electrons are in ${ }_{6}^{14} \mathrm{C}$?

6 protons, 8 (14-6) neutrons, 6 electrons
How many protons, neutrons, and electrons are in ${ }_{6}^{11} \mathrm{C}$?
6 protons, 5 (11-6) neutrons, 6 electrons

Naturally occurring carbon consists of three isotopes, ${ }^{12} \mathrm{C},{ }^{13} \mathrm{C}$, and ${ }^{14} \mathrm{C}$. State the number of protons, neutrons, and electrons in each of the following.

${ }^{12} \mathrm{C}$	${ }^{13} \mathrm{C}$	${ }^{14} \mathrm{C}$
6	6	6

Proton
Neutron
Electron
6
6

6
8
6

In naturally occurring magnesium, there are three isotopes.

Isotopes of Mg

Atomic symbol	${ }_{12}^{24} \mathrm{Mg}$	${ }_{12}^{25} \mathrm{Mg}$	${ }_{12}^{26} \mathrm{Mg}$
Number of protons	12	12	12
Number of electrons	12	12	12
Mass number	24	25	26
Number of neutrons	12	13	14

The Modern Periodic Table

$\begin{gathered} 1 \\ 1 \mathrm{~A} \end{gathered}$																	$\begin{array}{r} 18 \\ 8 \mathrm{~A} \end{array}$
1	$\overline{\bar{\lambda}}$											$\begin{array}{r} 13 \\ 3 \mathrm{~A} \\ \hline \end{array}$	$\begin{array}{r} 14 \\ 4 \mathrm{~A} \\ \hline \end{array}$	$\begin{array}{r} 15 \\ 5 \mathrm{~A} \end{array}$	$\begin{array}{r} 16 \\ 6 \mathrm{~A} \end{array}$	$\begin{aligned} & 17 \\ & 7 \mathrm{~A} \end{aligned}$	$\stackrel{2}{4}$
3	T											5	E	7 \mathbf{N}	$\begin{aligned} & 8 \\ & \mathbf{O} \end{aligned}$	9	10
గై	$\stackrel{\square}{7}$	$\begin{gathered} 3 \\ 3 \mathrm{~B} \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ 4 \mathrm{~B} \\ \hline \end{gathered}$	$\begin{gathered} 5 \\ 5 \mathrm{~B} \\ \hline \end{gathered}$	$\begin{gathered} 6 \\ 6 B \end{gathered}$	$\begin{gathered} 7 \\ 7 B \end{gathered}$	8	$\begin{gathered} 9 \\ -8 \mathrm{~B} \\ \hline \end{gathered}$		$\begin{array}{r} 11 \\ 1 \mathrm{~B} \end{array}$	$\begin{aligned} & 12 \\ & 2 \mathrm{~B} \end{aligned}$	13 Al	14	15 \mathbf{P}	$\begin{gathered} 16 \\ \mathbf{S} \end{gathered}$	17 1	\bigcirc
Σ	\sum	$\begin{aligned} & 21 \\ & \mathbf{S c} \end{aligned}$	$\begin{aligned} & 22 \\ & \mathbf{T i} \end{aligned}$	$\begin{aligned} & 23 \\ & \mathbf{V} \end{aligned}$	24		$\begin{aligned} & 26 \\ & \mathrm{Fe} \end{aligned}$	$\begin{aligned} & 27 \\ & \mathbf{C o} \end{aligned}$	$\begin{aligned} & 28 \\ & \mathbf{N i} \end{aligned}$	$\begin{gathered} 29 \\ \mathbf{C u} \end{gathered}$	$\begin{gathered} 30 \\ \mathbf{Z n} \end{gathered}$	$\begin{gathered} 31 \\ \mathbf{G a} \end{gathered}$	$\bar{\top}$	$\begin{gathered} 33 \\ \mathbf{A s} \end{gathered}$	$\begin{aligned} & 34 \\ & \mathbf{S e} \end{aligned}$	(1)	(D)
+	ญ	$\begin{aligned} & 39 \\ & \mathbf{Y} \end{aligned}$	$\begin{aligned} & 40 \\ & \mathbf{Z r} \end{aligned}$	$\stackrel{41}{\mathbf{N b}}$	Mo	Tc	$\begin{gathered} 44 \\ \mathbf{R u} \end{gathered}$	$\begin{aligned} & 45 \\ & \mathbf{R h} \end{aligned}$	$\begin{aligned} & 46 \\ & \text { Pd } \end{aligned}$	$\begin{gathered} 47 \\ \mathbf{A g} \end{gathered}$	$\begin{aligned} & 48 \\ & \text { Cd } \end{aligned}$	$\begin{aligned} & 49 \\ & \text { In } \end{aligned}$	Sn	$\begin{gathered} 51 \\ \mathbf{S b} \end{gathered}$	$\begin{aligned} & 52 \\ & \mathrm{Te} \end{aligned}$	(1)	0
$\begin{aligned} & 55 \\ & \mathrm{Cs} \end{aligned}$	56	$\begin{aligned} & 57 \\ & \mathbf{L a} \end{aligned}$	$\begin{gathered} 72 \\ \mathbf{H f} \end{gathered}$	$\begin{aligned} & 73 \\ & \mathbf{T a} \end{aligned}$	$\begin{aligned} & 74 \\ & \mathbf{W} \end{aligned}$	$\begin{aligned} & 75 \\ & \mathbf{R e} \end{aligned}$	$\begin{aligned} & 76 \\ & \text { Os } \end{aligned}$	$\begin{aligned} & 77 \\ & \mathbf{I r} \end{aligned}$	$\begin{aligned} & 78 \\ & \text { Pt } \end{aligned}$	$\begin{array}{r} 79 \\ \mathbf{A u} \end{array}$	80 $\mathbf{H g}$	81 $\mathbf{T l}$	$\begin{aligned} & \S 2 \\ & \mathbf{F b} \end{aligned}$	$\begin{aligned} & 83 \\ & \mathbf{B i} \end{aligned}$	$\begin{aligned} & 84 \\ & \text { Po } \end{aligned}$	$\not \subset$	81 \mathbf{R} 1
$\begin{aligned} & 37 \\ & \mathbf{F r} \end{aligned}$	Ra	89 Ac	104 $\mathbf{R f}$	105 Db	106 $\mathbf{S g}$	107 Bh	108 $\mathbf{H s}$	$\begin{aligned} & 109 \\ & \mathbf{M t} \end{aligned}$	$\begin{aligned} & 110 \\ & \text { Ds } \end{aligned}$	$\begin{aligned} & 111 \\ & \mathbf{R g} \end{aligned}$	112	113	114	115	116	(17)	118

Metals	58 $\mathbf{C e}$	59 $\mathbf{P r}$	60 $\mathbf{N d}$	61 $\mathbf{P m}$	62 $\mathbf{S m}$	63 $\mathbf{E u}$	64 $\mathbf{G d}$	65 $\mathbf{T b}$	66 $\mathbf{D y}$	67 $\mathbf{H o}$	68 $\mathbf{E r}$	69 $\mathbf{T m}$	70 $\mathbf{Y b}$	71 $\mathbf{L u}$	
	Metalloids	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	$\mathbf{P a}$	\mathbf{U}	$\mathbf{N p}$	$\mathbf{P u}$	$\mathbf{A m}$	$\mathbf{C m}$	$\mathbf{B k}$	$\mathbf{C f}$	$\mathbf{E s}$	$\mathbf{F m}$	$\mathbf{M d}$	$\mathbf{N o}$	$\mathbf{L r}$		

Nonmetals

A molecule is an aggregate of two or more atoms in a definite arrangement held together by chemical forces

H_{2}

$\mathrm{H}_{2} \mathrm{O}$

NH_{3}

CH_{4}

A diatomic molecule contains only two atoms

Water - a heteronuclear molecule

A polyatomic molecule contains more than two atoms

$$
\mathrm{O}_{3}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{CH}_{4}
$$

An ion is an atom, or group of atoms, that has a net positive or negative charge.
cation - ion with a positive charge
If a neutral atom loses one or more electrons it becomes a cation.

11 protons
11 electrons

11 protons
10 electrons
anion - ion with a negative charge If a neutral atom gains one or more electrons it becomes an anion.

17 protons
17 electrons

A monatomic ion contains only one atom

$$
\mathrm{Na}^{+}, \mathrm{Cl}^{-}, \mathrm{Ca}^{2+}, \mathrm{O}^{2-}, \mathrm{Al}^{3+}, \mathrm{N}^{3-}
$$

A polyatomic ion contains more than one atom
$\mathrm{OH}^{-}, \mathrm{CN}^{-}, \mathrm{NH}_{4}^{+}, \mathrm{CO}_{3}{ }^{2-}, \mathrm{HCO}_{3}{ }^{-}, \mathrm{SO}_{4}{ }^{2-}, \mathrm{PO}_{4}{ }^{3-}, \mathrm{NO}_{3}{ }^{-}, \mathrm{NO}_{2}{ }^{-}$

The names of common polyatomic anions

- end in ate. $\mathrm{NO}_{3}{ }^{-} \quad$ nitrate $\quad \mathrm{PO}_{4}{ }^{3-} \quad$ phosphate
- with one oxygen less end in ite.
$\mathrm{NO}_{2}{ }^{-}$
nitrite
$\mathrm{PO}_{3}{ }^{3-}$
phosphite
- with hydrogen attached use the prefix hydrogen (or bi).
$\mathrm{HCO}_{3}{ }^{-}$hydrogen carbonate
(bicarbonate)
$\mathrm{HSO}_{3}{ }^{-}$hydrogen sulfite
(bisulfite)

Common lons Shown on the Periodic Table

$\begin{gathered} 1 \\ 1 \mathrm{~A} \end{gathered}$																	$\begin{array}{r} 18 \\ 8 \mathrm{~A} \end{array}$
	$\begin{gathered} 2 \\ 2 \mathrm{~A} \end{gathered}$											$\begin{aligned} & 13 \\ & 3 \mathrm{~A} \end{aligned}$	$\begin{array}{r} 14 \\ 4 \mathrm{~A} \end{array}$	$\begin{array}{r} 15 \\ 5 \mathrm{~A} \end{array}$	$\begin{aligned} & 16 \\ & 6 \mathrm{~A} \end{aligned}$	17 7 A	
Li^{+}													C^{4}	N^{3-}	O^{2-}	F^{-}	
Na^{+}	Mg ${ }^{2+}$	$\begin{gathered} 3 \\ 3 \mathrm{~B} \end{gathered}$	4 4 B	5 5B	6 68	7 78	8	9 -8 B	10	11	$\begin{aligned} & 12 \\ & 2 \mathrm{~B} \end{aligned}$	Al^{3+}		\mathbf{P}^{3-}	S^{2-}	Cl^{-}	
\mathbf{K}^{+}	Ca^{2+}				$\begin{aligned} & \mathbf{C r}^{2+} \\ & \mathbf{C r}^{3+} \end{aligned}$	$\begin{gathered} \mathbf{M n}^{2+} \\ \mathbf{M n}^{3+} \end{gathered}$	$\begin{aligned} & \mathrm{Fe}^{2+} \\ & \mathrm{Fe}^{3+} \end{aligned}$	$\begin{aligned} & \mathrm{Co}^{2+} \\ & \mathrm{Co}^{3+} \end{aligned}$	$\begin{aligned} & \mathrm{Ni}^{2+} \\ & \mathrm{Ni}^{3+} \end{aligned}$	$\begin{gathered} \mathrm{Cu}^{+} \\ \mathbf{C u}^{2+} \end{gathered}$	$\mathbf{Z n}^{2+}$				Se^{2-}	Br^{-}	
$\mathbf{R b}{ }^{+}$	Sr^{2+}									$\mathbf{A g}^{+}$	Cd^{2+}		$\begin{aligned} & \mathrm{Sn}^{2+} \\ & \mathrm{Sn}^{4+} \end{aligned}$		Te^{2-}	I^{-}	
Cs ${ }^{+}$	Ba^{2+}									$\begin{gathered} \mathrm{Au}^{+} \\ \mathrm{Au}^{3+} \end{gathered}$	$\begin{aligned} & \mathbf{H g}_{2}^{2+} \\ & \mathbf{H g}^{2+} \end{aligned}$		$\begin{aligned} & \mathbf{P b}^{2+} \\ & \mathbf{P b}^{4+} \end{aligned}$				

How many protons and electrons are in ${ }_{13}^{27} \mathrm{Al}^{3+}$?
13 protons, $10(13-3)$ electrons
How many protons and electrons are in ${ }_{34}^{78} \mathrm{Se}^{2-}$?

34 protons, $36(34+2)$ electrons

ANY QUESTIONS??

Thank Yous

Formulas and Models

A molecular formula shows the exact number of atoms of each element in the smallest unit of a substance

An empirical formula shows the simplest whole-number ratio of the atoms in a substance
molecular
$\mathrm{H}_{2} \mathrm{O}$
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
O_{3}
$\mathrm{N}_{2} \mathrm{H}_{4}$
empirical
$\mathrm{H}_{2} \mathrm{O}$
$\mathrm{CH}_{2} \mathrm{O}$
O
NH_{2}

ionic compounds consist of a combination of cations and an anions

- The formula is usually the same as the empirical formula
- The sum of the charges on the cation(s) and anion(s) in each formula unit must equal zero

The ionic compound NaCl

The most reactive metals (green) and the most reactive nonmetals (blue) combine to form ionic compounds.

Formula of Ionic Compounds

$$
\begin{gathered}
{ }^{1 \mathrm{x}+2=+2} \mathrm{Na}_{2} \mathrm{CO}_{3}^{\prime}
\end{gathered}
$$

$$
\mathrm{Na}^{+} \quad \mathrm{CO}_{3}^{2-}
$$

$$
\begin{aligned}
& 2 x+3=+6 \\
& \mathrm{Al}_{2} \mathrm{O}_{3} \\
& \mathrm{Al}^{3+}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{Ca}^{2+} \quad \mathrm{Br}^{-}
\end{aligned}
$$

Chemical Nomenclature

- Ionic Compounds
- Most are binary compounds, some are ternary compounds
- Often a metal + nonmetal
- Anion (nonmetal), add "ide" to element name

BaCl_{2}	barium chloride
$\mathrm{K}_{2} \mathrm{O}$	potassium oxide
$\mathrm{Mg}(\mathrm{OH})_{2}$	magnesium hydroxide
KNO_{3}	potassium nitrate

- Transition metal ionic compounds
- indicate charge on metal with Roman numerals

$$
\begin{array}{lllll}
+1 & +2 & +3 & +4 & +5 \\
\text { (I) } & \text { (II) } & \text { (III) } & \text { (IV) } & \text { (V) }
\end{array}
$$

$\mathrm{FeCl}_{2} \quad 2 \mathrm{Cl}^{-}-2$ so Fe is +2
iron(II) chloride
$\mathrm{FeCl}_{3} \quad 3 \mathrm{Cl}^{-}-3$ so Fe is +3
iron(III) chloride
$\mathrm{Cr}_{2} \mathrm{~S}_{3} \quad 3 \mathrm{~S}^{-2}-6$ so Cr is $+3(6 / 2)$ chromium(III) sulfide

Element	Possible Ions Name of Ion	
Chromium	Cr^{2+} chromium(II) Cr^{3+} chromium(III)	
Copper	$\begin{array}{ll} \mathrm{Cu}^{+} & \text {copper(I) } \\ \mathrm{Cu}^{2+} & \text { copper }(\mathbf{I I}) \end{array}$	
Gold	$\begin{array}{ll} \mathrm{Au}^{+} & \text {gold(I) } \\ \mathbf{A u}^{3+} & \text { gold(III) } \end{array}$	
Iron	$\begin{array}{ll} \mathrm{Fe}^{2+} & \text { iron(II) } \\ \mathrm{Fe}^{3+} & \text { iron(III) } \end{array}$	
Lead	$\mathrm{Pb}^{\mathbf{+}} \quad$ lead(II)	
	$\mathrm{Pb}^{\mathbf{4 +}} \quad \operatorname{lead}(\mathbf{I V})$	
FeCl_{2}	iron(II) chloride	
FeCl_{3}	iron(III) chloride	
$\mathrm{Cu}_{2} \mathrm{~S}$	copper(I) sulfide	
CuCl_{2}	copper(II) chloride	
SnCl_{2}	tin(II) chloride	
PbBr_{4}	lead(IV) bromide	40

TABLE 2.2 The "-ide" Nomenclature of Some Common Monatomic Anions According to Their Positions in the Periodic Table

Group 4A	Group 5A	Group 6A	Group 7A
C carbide $\left(\mathrm{C}^{4-}\right)^{*}$	N nitride $\left(\mathrm{N}^{3-}\right)$	O oxide $\left(\mathrm{O}^{2-}\right)$	F fluoride $\left(\mathrm{F}^{-}\right)$
Si silicide $\left(\mathrm{Si}^{4-}\right)$	P phosphide $\left(\mathrm{P}^{3-}\right)$	S sulfide $\left(\mathrm{S}^{2-}\right)$	Cl chloride $\left(\mathrm{Cl}^{-}\right)$
		Se selenide $\left(\mathrm{Se}^{2-}\right)$	Br bromide $\left(\mathrm{Br}^{-}\right)$
	Te telluride $\left(\mathrm{Te}^{2-}\right)$	I iodide $\left(\mathrm{I}^{-}\right)$	

*The word "carbide" is also used for the anion C_{2}^{2-}.

Cation	Anion
aluminum $\left(\mathrm{Al}^{3+}\right)$	bromide (Br^{-})
ammonium $\left(\mathrm{NH}_{4}^{+}\right)$	carbonate $\left(\mathrm{CO}_{3}^{2-}\right)$
barium (Ba^{2+})	chlorate $\left(\mathrm{ClO}_{3}^{-}\right)$
cadmium $\left(\mathrm{Cd}^{2+}\right)$	chloride (Cl^{-})
calcium $\left(\mathrm{Ca}^{2+}\right)$	chromate (CrO_{4}^{2-})
cesium (Cs^{+})	cyanide (CN^{-})
chromium(III) or chromic (Cr^{3+})	dichromate $\left(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\right)$
cobalt(II) or cobaltous $\left(\mathrm{Co}^{2+}\right)$	dihydrogen phosphate ($\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$)
copper(I) or cuprous (Cu^{+})	fluoride (F^{-})
copper(II) or cupric $\left(\mathrm{Cu}^{2+}\right)$	hydride (H^{-})
hydrogen $\left(\mathrm{H}^{+}\right)$	hydrogen carbonate or bicarbonate (HCO_{3}^{-})
iron(II) or ferrous $\left(\mathrm{Fe}^{2+}\right)$	hydrogen phosphate (HPO_{4}^{2-})
iron(III) or ferric (Fe^{3+})	hydrogen sulfate or bisulfate (HSO_{4}^{-})
lead(II) or plumbous $\left(\mathrm{Pb}^{2+}\right)$	hydroxide (OH^{-})
lithium $\left(\mathrm{Li}^{+}\right)$	iodide (I^{-})
magnesium (Mg^{2+})	nitrate $\left(\mathrm{NO}_{3}^{-}\right)$
manganese(II) or manganous $\left(\mathrm{Mn}^{2+}\right)$	nitride (N^{3-})
mercury (I) or mercurous $\left(\mathrm{Hg}_{2}^{2+}\right)^{*}$	nitrite $\left(\mathrm{NO}_{2}^{-}\right)$
mercury(II) or mercuric $\left(\mathrm{Hg}^{2+}\right)$	oxide (O^{2-})
potassium (K^{+})	permanganate $\left(\mathrm{MnO}_{4}^{-}\right)$
rubidium (Rb^{+})	peroxide (O_{2}^{2-})
silver (Ag^{+})	phosphate $\left(\mathrm{PO}_{4}^{3-}\right)$
sodium (Na^{+})	sulfate (SO_{4}^{2-})
strontium (Sr^{2+})	sulfide (S^{2-})
$\operatorname{tin}(\mathrm{II})$ or stannous $\left(\mathrm{Sn}^{2+}\right)$	sulfite (SO_{3}^{2-})
zinc $\left(\mathrm{Zn}^{2+}\right)$	thiocyanate (SCN^{-})

Anion

bromide $\left(\mathrm{Br}^{-}\right)$
carbonate $\left(\mathrm{CO}_{3}^{2-}\right)$
chlorate $\left(\mathrm{ClO}_{3}^{-}\right)$
chloride (Cl^{-})
chromate $\left(\mathrm{CrO}_{4}^{2-}\right)$
cyanide $\left(\mathrm{CN}^{-}\right)$
dichromate $\left(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\right)$
dihydrogen phosphate $\left(\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right)$
fluoride (F^{-})
hydride $\left(\mathrm{H}^{-}\right)$
hydrogen carbonate or bicarbonate $\left(\mathrm{HCO}_{3}^{-}\right)$
hydrogen phosphate $\left(\mathrm{HPO}_{4}^{2-}\right)$
hydrogen sulfate or bisulfate $\left(\mathrm{HSO}_{4}^{-}\right)$
hydroxide $\left(\mathrm{OH}^{-}\right)$
iodide (I^{-})
nitrate $\left(\mathrm{NO}_{3}^{-}\right)$
nitride $\left(\mathrm{N}^{3-}\right)$
nitrite $\left(\mathrm{NO}_{2}^{-}\right)$
oxide (O^{2-})
permanganate $\left(\mathrm{MnO}_{4}^{-}\right)$
peroxide (O_{2}^{2-})
phosphate $\left(\mathrm{PO}_{4}^{3-}\right)$
sulfate $\left(\mathrm{SO}_{4}^{2-}\right)$
sulfide $\left(\mathrm{S}^{2-}\right)$
thiocyanate $\left(\mathrm{SCN}^{-}\right)$

Flowchart for Naming Ionic Compounds

- Molecular compounds
- Nonmetals or nonmetals + metalloids
- Common names
$-\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{CH}_{4}$,
- Element furthest to the left in a period and closest to the bottom of a group on periodic table is placed first in formula
- If more than one compound can be formed from the same elements, use prefixes to indicate number of each kind of atom
- Last element name ends in ide

TABLE 2.4
Greek Prefixes Used in Naming Molecular
Compounds

Prefix	Meaning
mono-	1
di-	2
tri-	3
tetra-	4
penta-	5
hexa-	6
hepta-	7
octa-	8
nona-	9
deca-	10

Molecular Compounds

HI hydrogen iodide
$\mathrm{NF}_{3} \quad$ nitrogen trifluoride
SO_{2} sulfur dioxide
$\mathrm{N}_{2} \mathrm{Cl}_{4} \quad$ dinitrogen tetrachloride
NO_{2} nitrogen dioxide
$\mathrm{N}_{2} \mathrm{O}$ dinitrogen monoxide

An acid can be defined as a substance that yields hydrogen ions $\left(\mathrm{H}^{+}\right)$when dissolved in water.

For example: HCl gas and HCl in water
-Pure substance, hydrogen chloride HCl
-Dissolved in water $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right.$and $\left.\mathrm{Cl}^{-}\right)$, hydrochloric acid

TABLE 2.5 Some Simple Acids

Anion

F^{-}(fluoride)
Cl^{-}(chloride)
Br^{-}(bromide)
I^{-}(iodide)
CN^{-}(cyanide)
S^{2-} (sulfide)

Corresponding Acid

HF (hydrofluoric acid)
HCl (hydrochloric acid)
HBr (hydrobromic acid)
HI (hydroiodic acid)
HCN (hydrocyanic acid)
$\mathrm{H}_{2} \mathrm{~S}$ (hydrosulfuric acid)
(H2S Hydrogen sulfide)

An oxoacid is an acid that contains hydrogen, oxygen, and another element (the central element).
HNO_{3} HNO_{2} $\mathrm{H}_{2} \mathrm{SO}_{4}$ $\mathrm{H}_{2} \mathrm{SO}_{3}$
$\mathrm{H}_{2} \mathrm{CO}_{3}$ $\mathrm{H}_{3} \mathrm{PO}_{4}$
nitric acid
nitrous acid
sulfuric acid
sulfurous acid
carbonic acid
phosphoric acid

Naming Oxoacids and Oxoanions

Oxoacid

Oxoanion

The rules for naming oxoanions, anions of oxoacids, are as follows:

1. When all the H ions are removed from the "-ic" acid, the anion's name ends with "-ate."
2. When all the H ions are removed from the "-ous" acid, the anion's name ends with "-ite."
3. The names of anions in which one or more but not all the hydrogen ions have been removed must indicate the number of H ions present.
For example: Phosphoric acid : H3PO4
$-\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$dihydrogen phosphate
$-\mathrm{HPO}_{4}{ }^{2-}$ hydrogen phosphate
$-\mathrm{PO}_{4}{ }^{3-}$ phosphate

TABLE 2.6 Names of Oxoacids and Oxoanions That Contain Chlorine

Acid
HClO_{4} (perchloric acid)
HClO_{3} (chloric acid)
HClO_{2} (chlorous acid)
HClO (hypochlorous acid)

Anion
ClO_{4}^{-}(perchlorate)
ClO_{3}^{-}(chlorate)
ClO_{2}^{-}(chlorite)
ClO^{-}(hypochlorite)

A base can be defined as a substance that yields hydroxide ions $\left(\mathrm{OH}^{-}\right)$when dissolved in water.

NaOH
KOH
$\mathrm{Ba}(\mathrm{OH})_{2}$
sodium hydroxide
potassium hydroxide
barium hydroxide

Hydrates are compounds that have a specific number of water molecules attached to them.
$\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{LiCl} \cdot \mathrm{H}_{2} \mathrm{O}$
$\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O} \longrightarrow$ copper(II) sulfate pentahydrate
barium chloride dihydrate
lithium chloride monohydrate
magnesium sulfate heptahydrate
strontium nitrate tetrahydrate

TABLE 2.7 Common and Systematic Names of Some Compounds

Formula
$\mathrm{H}_{2} \mathrm{O}$
NH_{3}
CO_{2}
NaCl
$\mathrm{N}_{2} \mathrm{O}$
CaCO
CaO
$\mathrm{Ca}(\mathrm{OH})_{2}$
NaHCO_{3}
$\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Mg}_{2}(\mathrm{OH})_{2}$
CaSO

Common Name

Water
Ammonia
Dry ice
Table salt
Laughing gas
Marble, chalk, limestone
Quicklime
Slaked lime
Baking soda
Washing soda
Epsom salt
Milk of magnesia
Gypsum

Systematic Name

Dihydrogen monoxide
Trihydrogen nitride
Solid carbon dioxide
Sodium chloride
Dinitrogen monoxide
Calcium carbonate
Calcium oxide
Calcium hydroxide
Sodium hydrogen carbonate
Sodium carbonate decahydrate
Magnesium sulfate heptahydrate
Magnesium hydroxide
Calcium sulfate dihydrate

ANY QUESTIONS??

Thank Yous

Chapter 3 Mass Relationships in Chemical Reactions

3.2 Molar mass and Avogadro's number
3.3 Molecularmitasusll electrons) are
3.4 Percent composition of compounds
3.5 Chemical reactipms and abomical equations
3.6 Amounts vr peaceams ofran products
3.7 Limiting mepresented by dots.
3.8 Rea ion yie

Micro World
 Macro World grams

Atomic mass is the mass of an atom in atomic mass units (amu)

One atomic mass unit is a mass of onetwelfth of the mass of one carbon-12 atom.

By definition:
 1 atom ${ }^{12} \mathrm{C}$ "weighs" 12 amu

On this scale

$$
\begin{aligned}
& { }^{1} \mathrm{H}=1.00794 \mathrm{amu} \\
& { }^{16} \mathrm{O}=15.9994 \mathrm{amu}
\end{aligned}
$$

The average atomic mass is the weighted average of all of the naturally occurring isotopes of the element.

Natural lithium is:

$7.42 \%{ }^{6} \mathrm{Li}(6.015 \mathrm{amu})$ $92.58 \%{ }^{7} \mathrm{Li}(7.016 \mathrm{amu})$

Average atomic mass of lithium:

$$
\frac{7.42 \times 6.015+92.58 \times 7.016}{100}=6.941 \mathrm{amu}
$$

$\begin{gathered} 1 \\ 1 \mathrm{~A} \end{gathered}$																	$\begin{aligned} & 18 \\ & 8 \mathrm{~A} \end{aligned}$
$\begin{gathered} 1 \\ \mathbf{H} \\ 1.008 \end{gathered}$	$\begin{gathered} 2 \\ 2 \mathrm{~A} \end{gathered}$		$\begin{gathered} 24 \\ \mathbf{C r} \\ 52.00 \end{gathered}$			Atomic number Atomic mass						$\begin{array}{r} 13 \\ 3 \mathrm{~A} \end{array}$	$\begin{array}{r} 14 \\ 4 \mathrm{~A} \end{array}$	$\begin{gathered} 15 \\ 5 A \end{gathered}$	$\begin{aligned} & 16 \\ & 6 A \end{aligned}$	$\begin{aligned} & 17 \\ & 7 \mathrm{~A} \end{aligned}$	$\begin{gathered} 2 \\ \mathrm{He} \\ 4.003 \end{gathered}$
3 Li 6.941	$\begin{gathered} 4 \\ \text { Be } \end{gathered}$		Average atomic mass (6.94t)									$\begin{gathered} 5 \\ \mathbf{B} \\ 10.81 \end{gathered}$	$\begin{gathered} 6 \\ \mathbf{C} \\ 12.01 \end{gathered}$	$\begin{gathered} 7 \\ \mathbf{N} \\ 14.01 \end{gathered}$	$\begin{gathered} 8 \\ \mathbf{O} \\ 16.00 \end{gathered}$	$\begin{gathered} 9 \\ \mathbf{F} \\ 19.00 \end{gathered}$	$\begin{gathered} 10 \\ \mathrm{Ne} \\ 20.18 \end{gathered}$
$\begin{gathered} 11 \\ \mathbf{N a} \\ 22.99 \end{gathered}$	$\begin{gathered} 12 \\ \mathbf{M g} \\ 24.31 \end{gathered}$	$\begin{gathered} 3 \\ 3 B \end{gathered}$	$\begin{gathered} 4 \\ 4 B \end{gathered}$	$\begin{gathered} 5 \\ 5 B \end{gathered}$	$\begin{gathered} 6 \\ 6 B \end{gathered}$	$\begin{gathered} 7 \\ 7 B \end{gathered}$	8	$\begin{gathered} 9 \\ -8 B \end{gathered}-$	10	$\begin{aligned} & 11 \\ & 1 B \end{aligned}$	$\begin{aligned} & 12 \\ & 2 B \end{aligned}$	$\begin{gathered} 13 \\ \text { Al } \\ 26.98 \end{gathered}$	$\begin{gathered} 14 \\ \text { Si } \\ 28.09 \end{gathered}$	$\begin{gathered} 15 \\ \mathbf{P} \\ 30.97 \end{gathered}$	$\begin{gathered} 16 \\ \mathrm{~S} \\ 32.07 \end{gathered}$	$\begin{gathered} 17 \\ \mathrm{Cl} \\ 35.45 \end{gathered}$	$\begin{gathered} 18 \\ \mathbf{A r} \\ 39.95 \end{gathered}$
$\begin{gathered} 19 \\ \mathbf{K} \\ 39.10 \end{gathered}$	$\begin{gathered} 20 \\ \mathbf{C a} \\ 40.08 \end{gathered}$	$\begin{gathered} 21 \\ \text { Sc } \\ 44.96 \end{gathered}$	$\begin{gathered} 22 \\ \mathbf{T i} \\ 47.88 \end{gathered}$	$\begin{gathered} 23 \\ \mathbf{V} \\ 50.94 \end{gathered}$	$\begin{gathered} 24 \\ \mathbf{C r} \\ 52.00 \end{gathered}$	$\begin{gathered} 25 \\ \mathbf{M n} \\ 54.94 \end{gathered}$	$\begin{array}{r} 26 \\ \mathbf{F e} \\ 55.85 \end{array}$	$\begin{gathered} 27 \\ \text { Co } \\ 58.93 \end{gathered}$	$\begin{gathered} 28 \\ \mathbf{N i} \\ 58.69 \end{gathered}$	$\begin{gathered} 29 \\ \mathrm{Cu} \\ 63.55 \end{gathered}$	$\begin{gathered} 30 \\ \mathbf{Z n} \\ 65.39 \end{gathered}$	$\begin{gathered} 31 \\ \mathbf{G a} \\ 69.72 \end{gathered}$	$\begin{gathered} 32 \\ \text { Ge } \\ 72.59 \end{gathered}$	$\begin{gathered} 33 \\ \text { As } \\ 74.92 \end{gathered}$	$\begin{gathered} 34 \\ \text { Se } \\ 78.96 \end{gathered}$	$\begin{gathered} 35 \\ \mathbf{B r} \\ 79.90 \end{gathered}$	$\begin{gathered} 36 \\ \mathbf{K r} \\ 83.80 \end{gathered}$
$\begin{gathered} 37 \\ \mathbf{R b} \\ 85.47 \end{gathered}$	$\begin{gathered} 38 \\ \mathbf{S r} \\ 87.62 \end{gathered}$	$\begin{gathered} 39 \\ \mathbf{Y} \\ 88.91 \end{gathered}$	$\begin{gathered} 40 \\ \mathbf{Z r} \\ 91.22 \end{gathered}$	$\begin{gathered} 41 \\ \mathbf{N b} \\ 92.91 \end{gathered}$	$\begin{gathered} 42 \\ \mathbf{M o} \\ 95.94 \end{gathered}$	$\begin{gathered} 43 \\ \mathbf{T c} \\ (98) \end{gathered}$	$\begin{gathered} 44 \\ \mathbf{R u} \\ 101.1 \end{gathered}$	$\begin{gathered} 45 \\ \mathbf{R h} \\ 102.9 \end{gathered}$	$\begin{gathered} 46 \\ \text { Pd } \\ 106.4 \end{gathered}$	$\begin{gathered} 47 \\ \mathbf{A g} \\ 107.9 \end{gathered}$	$\begin{gathered} 48 \\ \text { Cd } \\ 112.4 \end{gathered}$	$\begin{gathered} 49 \\ \text { In } \\ 114.8 \end{gathered}$	$\begin{gathered} 50 \\ \text { Sn } \\ 118.7 \end{gathered}$	$\begin{gathered} 51 \\ \mathbf{S b} \\ 121.8 \end{gathered}$	$\begin{gathered} 52 \\ \mathbf{T e} \\ 127.6 \end{gathered}$	$\begin{gathered} 53 \\ \text { I } \\ 126.9 \end{gathered}$	$\begin{array}{r} 54 \\ \mathbf{X e} \\ 131.3 \end{array}$
$\begin{gathered} 55 \\ \text { Cs } \\ 132.9 \end{gathered}$	$\begin{array}{r} 56 \\ \mathbf{B a} \\ 137.3 \end{array}$	$\begin{gathered} 57 \\ \mathbf{L a} \\ 138.9 \end{gathered}$	$\begin{gathered} 72 \\ \text { Hf } \\ 178.5 \end{gathered}$	$\begin{gathered} 73 \\ \mathbf{T a} \\ 180.9 \end{gathered}$	$\begin{gathered} 74 \\ \mathbf{W} \\ 183.9 \end{gathered}$	$\begin{gathered} 75 \\ \mathbf{R e} \\ 186.2 \end{gathered}$	$\begin{gathered} 76 \\ \text { Os } \\ 190.2 \end{gathered}$	$\begin{gathered} 77 \\ \mathbf{I r} \\ 192.2 \end{gathered}$	$\begin{gathered} 78 \\ \mathbf{P t} \\ 195.1 \end{gathered}$	$\begin{gathered} 79 \\ \mathbf{A u} \\ 197.0 \end{gathered}$	$\begin{gathered} 80 \\ \mathbf{H g} \\ 200.6 \end{gathered}$	$\begin{gathered} 81 \\ \text { T1 } \\ 204.4 \end{gathered}$	$\begin{gathered} 82 \\ \text { Pb } \\ 207.2 \end{gathered}$	$\begin{gathered} 83 \\ \mathbf{B i} \\ 209.0 \end{gathered}$	$\begin{gathered} 84 \\ \text { Po } \\ (210) \end{gathered}$	$\begin{gathered} 85 \\ \text { At } \\ (210) \end{gathered}$	$\begin{gathered} 86 \\ \mathbf{R n} \\ (222) \end{gathered}$
$\begin{gathered} 87 \\ \mathbf{F r} \\ (223) \end{gathered}$	$\begin{gathered} 88 \\ \mathbf{R a} \\ (226) \end{gathered}$	$\begin{gathered} 89 \\ \mathbf{A c} \\ (227) \end{gathered}$	$\begin{gathered} 104 \\ \mathbf{R f} \\ (257) \end{gathered}$	$\begin{gathered} 105 \\ \mathbf{H a} \\ (260) \end{gathered}$	$\begin{gathered} 106 \\ \mathbf{S g} \\ (263) \end{gathered}$	$\begin{gathered} 107 \\ \text { Ns } \\ (262) \end{gathered}$	$\begin{gathered} 108 \\ \text { Hs } \\ (265) \end{gathered}$	$\begin{gathered} 109 \\ \mathbf{M t} \\ (266) \end{gathered}$	110	111	112						

Metals

Metalloids

Nonmetals

One-Mole Quantities

The mole (mol) is the amount of a substance that contains as many elementary entities (atoms, ions or molecules) as there are atoms in exactly 12 grams of ${ }^{12} \mathrm{C}$.

$$
1 \mathrm{~mol}=N_{A}=6.0221367 \times 10^{23}
$$

Avogadro's number (N_{A})

1 mole
1 mole C
1 mole Na^{+}
1 mole $\mathrm{H}_{2} \mathrm{O}$

Number of Atoms
$=6.02 \times 10^{23} \mathrm{C}$ atoms
$=6.02 \times 10^{23} \mathrm{Na}^{+}$ions
$=6.02 \times 10^{23} \mathrm{H}_{2} \mathrm{O}$ molecules

NTM M D LR

1 mole of anything $=6.022 \times 10^{23}$ units of that thing

Molar mass is the mass of 1 mole of units

 (atoms/molecules) in grams
12.01 g C atoms

Molar Mass from Periodic Table

Molar mass is the atomic mass expressed in grams.

1 mole Ag 1 mole C
$=107.9 \mathrm{~g}=12.01 \mathrm{~g}$
1 mole S
$=32.07 \mathrm{~g}$

1 mol of C contains $6.022 \times 10^{23} \mathrm{C}$ atoms and has a mass of 12.01 g (molar mass)

$\mathcal{M}=$ molar mass in $\mathrm{g} / \mathrm{mol}$
$N_{A}=$ Avogadro's number

Do You Understand Molar Mass?

How many atoms are in 0.551 g of potassium (K) ?

$$
\begin{gathered}
1 \mathrm{~mol} \text { of } \mathrm{K}=39.10 \mathrm{~g} \text { of } \mathrm{K} \\
1 \mathrm{~mol} \text { of } \mathrm{K}=6.022 \times 10^{23} \text { atoms of } \mathrm{K}
\end{gathered}
$$

$0.551 \mathrm{gK} \times \frac{1 \text { motK }}{39.10 \mathrm{gK}} \times \frac{6.022 \times 10^{23} \text { atoms } \mathrm{K}}{1 \text { motK }}=$
8.49×10^{21} atoms of K

Molecular mass (or molecular weight) is the sum of the atomic masses (in amu) in a molecule.

1 molecule of SO_{2} weighs 64.07 amu 1 mole of SO_{2} weighs 64.07 g

Aspirin $\mathrm{C}_{\mathbf{9}} \mathrm{H}_{8} \mathrm{O}_{4}$

Number of atoms in 1 molecule Carbon (C) Hydrogen (H) Oxygen (O)

9 mole C

8 mole H
4 mole O

Do You Understand Molecular Mass?

How many H atoms are in 72.5 g of $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$?

moles of $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}=72.5 \mathrm{~g} / 60.095 \mathrm{~g} / \mathrm{mol}=1.21 \mathrm{~mol}$
1 mol $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$ molecules contains 8 mol H atoms 1 mol of H atoms is $6.022 \times 10^{23} \mathrm{H}$ atoms
$72.5 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O} \times \frac{1 \mathrm{mote}_{3} \mathrm{H}_{8} \mathrm{O}}{60 \mathrm{gG}_{3} \mathrm{H}_{8} \mathrm{O}} \times \frac{8 \text { mot } \mathrm{H} \text { atoms }}{1 \mathrm{~mol}_{3} \mathrm{H}_{8} \mathrm{O}} \times \frac{6.022 \times 10^{23} \mathrm{H} \text { atoms }}{1 \mathrm{moL} H \text { atoms }}=$ $5.82 \times 10^{24} \mathrm{H}$ atoms

Steps: 1. Convert grams of $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$ to moles of $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$.
2. Convert moles of $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$ to moles of H atoms.
3. Convert moles of H atoms to number of H atoms.

Formula mass is the sum of the atomic masses (in amu) in a formula unit of an ionic compound.

1 Na 22.99 amu $1 \mathrm{Cl}+35.45 \mathrm{amu}$ NaCl 58.44 amu

For any ionic compound
 formula mass (amu) = molar mass (grams)

> 1 formula unit of $\mathrm{NaCl}=58.44 \mathrm{amu}$ 1 mole of $\mathrm{NaCl}=58.44 \mathrm{~g}$ of NaCl

Do You Understand Formula Mass?

What is the formula mass of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$?
1 formula unit of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$

3 Ca	$3 \times 40.08 \mathrm{~g} / \mathrm{mol}$
2 P	$2 \times 30.97 \mathrm{~g} / \mathrm{mol}$
8 O	$+\quad 8 \times 16.00 \mathrm{~g} / \mathrm{mol}$
	$310.18 \mathrm{~g} / \mathrm{mol}$

Units of grams per mole are the most practical for chemical calculations!

Percent composition of an element in a compound =

$\frac{n \times \text { molar mass of element }}{\text { molar mass of compound }} \times 100 \%$

n is the number of moles of the element in 1 mole of the compound (assume you have 1 mole!).

$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$

$$
\begin{aligned}
& \% C=\frac{2 \times(12.01 \mathrm{~g})}{46.07 \mathrm{~g}} \times 100 \%=52.14 \% \\
& \% \mathrm{H}=\frac{6 \times(1.008 \mathrm{~g})}{46.07 \mathrm{~g}} \times 100 \%=13.13 \% \\
& \% \mathrm{O}=\frac{1 \times(16.00 \mathrm{~g})}{46.07 \mathrm{~g}} \times 100 \%=34.73 \% \\
& 52.14 \%+13.13 \%+34.73 \%=100.0 \%
\end{aligned}
$$

Percent Composition and Empirical Formulas

Mass percent

Convert to grams and divide by molar mass

Moles of each element

Determine the empirical formula of a compound that has the following percent composition by mass: K 24.75\%, Mn 34.77\%, O 40.51\% percent.

Divide by the smallest number of moles

Mole ratios
of elements

Change to integer subscripts

Empirical formula

To begin, assume for simplicity that you have 100 g of compound!

Percent Composition and Empirical Formulas

```
Mass
percent
```


Moles of each element

Divide by the smallest number of moles

```
Mole ratios of elements
```

Empirical formula

$$
n_{\mathrm{K}}=0.6330, n_{\mathrm{M}}=0.6329, n_{\mathrm{D}}=2.532
$$

$$
K: \frac{0.6330}{0.6329} \approx 1.0
$$

$$
\mathrm{Mn}: \frac{0.6329}{0.6329}=1.0
$$

$$
0: \frac{2.532}{0.6329} \approx 4.0
$$

KMnO_{4}

A process in which one or more substances is changed into one or more new substances is a chemical reaction.

A chemical equation uses chemical symbols to show what happens during a chemical reaction.

Two hydrogen molecules + One oxygen molecule $2 \mathrm{H}_{2}+$

$$
\mathrm{O}_{2}
$$

\longrightarrow Two water molecules
$2 \mathrm{H}_{2} \mathrm{O}$
reactants \longrightarrow products
In a balanced chemical reaction

- atoms are not gained or lost.
- the number of reactant atoms is equal to the number of product atoms.

Symbols used in chemical equations show

- the states of the reactants.
- the states of the products.
- the reaction conditions.

Symbol	Meaning
+	Separates two or more formulas
\longrightarrow	Reacts to form products Δ
The reactants are heated	
(s)	Solid
(l)	Liquid
(g)	Gas
$(a q)$	Aqueous

How to "Read" Chemical Equations

$$
2 \mathrm{Mg}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{MgO}
$$

2 atoms $\mathrm{Mg}+1$ molecule O_{2} makes 2 formula units MgO

48.6 grams $\mathrm{Mg}+32.0$ grams O_{2} makes 80.6 g MgO

IS NOT
 2 grams $\mathrm{Mg}+1$ gram O_{2} makes 2 g MgO

Balancing Chemical Equations

1. Write the correct formula(s) for the reactants on the left side and the correct formula(s) for the product(s) on the right side of the equation.

Ethane reacts with oxygen to form carbon dioxide and water

$$
\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

2. Change the numbers in front of the formulas (coefficients) to make the number of atoms of each element the same on both sides of the equation. Do not change the subscripts.
$2 \mathrm{C}_{2} \mathrm{H}_{6}$ NOT $\mathrm{C}_{4} \mathrm{H}_{12}$

Balancing Chemical Equations

3. Start by balancing those elements that appear in only one reactant and one product.
$\underset{\uparrow}{\mathrm{C}_{2}} \mathrm{H}_{6}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \quad$ start with C or H but not O

2 carbon on left

$$
\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}+\underset{\uparrow}{\mathrm{H}_{2} \mathrm{O}}
$$

6 hydrogen
on left

$$
\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}
$$

Balancing Chemical Equations

4. Balance those elements that appear in two or more reactants or products.

$$
\begin{array}{ccc}
\mathrm{C}_{2} \mathrm{H}_{6}+\underset{\uparrow}{\mathrm{O}_{2}} & 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O} & \text { multiply } \mathrm{O}_{2} \text { by } \frac{7}{2} \\
\begin{array}{c}
\text { 2 oxygen } \\
\text { on left }
\end{array} & \begin{array}{l}
4 \text { oxygen }+3 \text { oxygen }=7 \text { oxygen } \\
(2 \times 2) \quad(3 \times 1)
\end{array} \quad \text { on right }
\end{array}
$$

$\mathrm{C}_{2} \mathrm{H}_{6}+\frac{7}{2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$ remove fraction multiply both sides by 2
$2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \longrightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$

Balancing Chemical Equations

5. Check to make sure that you have the same number of each type of atom on both sides of the equation.

$$
\begin{array}{cc}
2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \longrightarrow & 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \\
4 \mathrm{C}(2 \times 2) & 4 \mathrm{C} \\
12 \mathrm{H}(2 \times 6) & 12 \mathrm{H}(6 \times 2) \\
14 \mathrm{O}(7 \times 2) & 14 \mathrm{O}(4 \times 2+6)
\end{array}
$$

Reactants
Products

4 C	4 C
12 H	12 H
14 O	14 O

Acetylene gas $\mathrm{C}_{2} \mathrm{H}_{2}$ burns in the oxyacetylene torch for welding. How many grams of $\mathrm{C}_{2} \mathrm{H}_{2}$ are burned if the reaction produces $75.0 \mathrm{~g} \mathrm{CO}_{2}$?
$2 \mathrm{C}_{2} \mathrm{H}_{2}(g)+5 \mathrm{O}_{2}(g) \rightarrow 4 \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)$
$75.0 \mathrm{~g} \mathrm{CO}_{2} \times 1{\text { mole } \mathrm{CO}_{2}}^{2} \times 2$ moles $\mathrm{C}_{2} \underline{\mathrm{H}}_{2} \times 26.0 \mathrm{~g} \mathrm{C}_{2} \underline{\mathrm{H}}_{2}$ $44.0 \mathrm{~g} \mathrm{CO}_{2} \quad 4$ moles $\mathrm{CO}_{2} \quad 1{\text { mole } \mathrm{C}_{2} \mathrm{H}_{2}}^{2}$
$=22.2 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{2}$

Stoichiometry -

 Quantitative study of reactants and products in a chemical reaction

1. Write the balanced chemical equation.
2. Convert quantities of known substances into moles.
3. Use coefficients in balanced equation to calculate the number of moles of the sought quantity.
4. Convert moles of sought quantity into the desired units.

Methanol burns in air according to the equation

$$
2 \mathrm{CH}_{3} \mathrm{OH}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

If 209 g of methanol are used up in the combustion, what mass of water is produced?
grams $\mathrm{CH}_{3} \mathrm{OH} \longrightarrow$ moles $\mathrm{CH}_{3} \mathrm{OH} \longrightarrow$ moles $\mathrm{H}_{2} \mathrm{O} \longrightarrow$ grams $\mathrm{H}_{2} \mathrm{O}$

209 gCH
235 g of $\mathrm{H}_{2} \mathrm{O}$

Limiting reagent - the reactant used up first in a reaction, controlling the amounts of products formed

Excess reagents - the reactants present in quantities greater than necessary to react with the quantity of the limiting regent

Limiting Reactant

5 cars + 200 drivers \longrightarrow Limiting cars or drivers? 50 chairs +15 students \longrightarrow Limiting chairs or students?

Determining the Limiting Reactant

(the one gives the least amount of product)

If you heat 2.50 mol of Fe and 3.00 mol of S , how many moles of FeS are formed?

$$
\mathrm{Fe}(s)+\mathrm{S}(s) \rightarrow \mathrm{FeS}(s)
$$

- According to the balanced equation, 1 mol of Fe reacts with 1 mol of S to give 1 mol of FeS.
- So 2.50 mol of Fe will react with 2.50 mol of S to produce 2.50 mol of FeS.
- Therefore, iron is the limiting reactant and sulfur is the excess reactant.

Mass Limiting Reactant Problems

There are three steps to a limiting reactant problem:

1. Calculate the mass of product that can be produced from the first reactant.
mass reactant $\# 1 \Rightarrow$ mol reactant $\# 1 \Rightarrow$ mol product \Rightarrow mass product
2. Calculate the mass of product that can be produced from the second reactant.
mass reactant $\# 2 \Rightarrow$ mol reactant $\# 2 \Rightarrow$ mol product \Rightarrow mass product
3. The limiting reactant is the reactant that produces the least amount of product.

In a reaction, 124 g of Al are reacted with 601 g of $\mathrm{Fe}_{2} \mathrm{O}_{3}$.

$$
2 \mathrm{Al}+\mathrm{Fe}_{2} \mathrm{O}_{3} \longrightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Fe}
$$

Calculate the mass of $\mathrm{Al}_{2} \mathrm{O}_{3}$ formed in grams.

1. Balanced reaction: Done.
2. Moles of "given" reactants.

Moles of $\mathrm{Al}=124 \mathrm{~g} / 26.9815 \mathrm{~g} / \mathrm{mol}=4.60 \mathrm{~mol}$ Moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}=601 \mathrm{~g} / 159.6882 \mathrm{~g} / \mathrm{mol}=3.76 \mathrm{~mol}$
3. Moles of "desired" product, $\mathrm{Al}_{2} \mathrm{O}_{3}$.

$$
2 \mathrm{Al}+\mathrm{Fe}_{2} \mathrm{O}_{3} \longrightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Fe}
$$

Moles of $\mathrm{Al}_{2} \mathrm{O}_{3}=3.76 \mathrm{~mol} \mathrm{Fe} 2 \mathrm{O}_{3} \times 1 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}=3.76 \mathrm{~mole} \mathrm{Al} \mathrm{O}_{3}$ based on $\mathrm{Fe}_{2} \mathrm{O}_{3} \quad 1 \quad 1 \mathrm{~mol} \mathrm{FerO}_{3}$
Keep the smaller answer! Al is the limiting reactant.
4. Grams of $\mathrm{Al}_{2} \mathrm{O}_{3}=2.30 \mathrm{~mol} X 101.9612 \mathrm{~g} / \mathrm{mol}=\mathbf{2 3 5} \mathbf{g}$

How many grams of AgBr can be formed when solutions containing $50 \mathrm{~g} \mathrm{MgBr}_{2}$ and $100 \mathrm{~g} \mathrm{AgNO}_{3}$ are mixed together? how many grams of the excess reactant remain unreacted?
$\mathrm{MgBr}_{2}+2 \mathrm{AgNO}_{3} \longrightarrow 2 \mathrm{AgBr}+\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$
mole ratio: $1 \mathrm{~mol} \mathrm{MgBr}_{2} \longleftrightarrow 2$ mol $\mathrm{AgNO}_{3} \longleftrightarrow 2 \mathrm{~mol} \mathrm{AgBr}$
(50/184.1) $\mathrm{mol} \mathrm{MgBr}_{2} \times \frac{2 \mathrm{~mol} \mathrm{AgBr}}{1 \mathrm{~mol} \mathrm{MgBr}_{2}} \times 187.8=102 \mathrm{~g} \mathrm{AgBr}$
(100/169.9) $\mathrm{mol} \mathrm{AgNO}_{3} \times \underset{2}{2 \underset{\mathrm{~mol} \mathrm{AgNO}}{3}} \mathrm{2} \mathrm{mol} \mathrm{AgBr} \times 187.8=110.5 \mathrm{~g} \mathrm{AgBr}$
$\mathrm{MgBr}_{2}=$ limiting reactant $\Rightarrow 102 \mathrm{~g} \mathrm{AgBr}$ is yielded
(50/184.1) $\mathrm{mol} \mathrm{MgBr}_{2} \times \frac{2 \mathrm{~mol} \mathrm{AgNO}_{3}}{1 \mathrm{~mol} \mathrm{MgBr}_{2}}-$ 169.9. $=92.3 \mathrm{~g} \mathrm{AgNO}_{3}$
$100-92.3=7.7 \mathrm{~g} \mathrm{AgNO}_{3}$ unreacted

Reaction Yield

Theoretical Yield is the amount of product that would result if all the limiting reagent reacted. Can be obtained from calculation based on balanced equation.

Actual Yield is the amount of product actually obtained from a reaction. Can be obtained from the given problem

Percent yield is the amount of the actual yield compared to the theoretical yield.

$$
\% \text { Yield }=\frac{\text { Actual Yield }}{\text { Theoretical Yield }} \times 100
$$

- Suppose a student performs a reaction and obtains 0.875 g of CuCO_{3} and the theoretical yield is 0.988 g . What is the percent yield?
$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(a q)+\mathrm{Na}_{2} \mathrm{CO}_{3}(a q) \rightarrow \mathrm{CuCO}_{3}(s)+2 \mathrm{NaNO}_{3}(a q)$
$\frac{0.875 \mathrm{~g} \mathrm{CuCO}_{3}}{0.988 \mathrm{~g} \mathrm{CuCO}_{3}} \times 100 \%=88.6 \%$
- The percent yield obtained is 88.6%.

ANY QUESTIONS??

Reactions in Aqueous Solution

Chapter 4

4.1 General Properties of Aqueous Solutions
 4.2 Precipitation Reactions 4.3 Acid- Base Reactions 4.4 Oxidation - Reduction Reactions 4.4 Concentration of Solutions 4.5 Titration

4.1 General Properties of Aqueous Solutions

A solution is a homogenous mixture of 2 or more substances

solute (gas/liquid/solid)

 $+$Aqueous solution

Solution Soft drink ($)$			$\underline{\text { Solvent }}$
$\mathrm{H}_{2} \mathrm{O}$	$\underline{\text { Solute }}$		
Air (g)	7	$\mathrm{~N}_{2}$	$\mathrm{O}_{2}, \mathrm{CO}_{2},{\mathrm{Ar}, \mathrm{CH}_{4}}_{\text {Sugar, } \mathrm{CO}_{2}}$
Alloy (s)	Cu	Ni	

Sea water ????
Aqueous Solution Solvent Solute

Sea water
Vinegar
$\mathrm{H}_{2} \mathrm{O}$
$\mathrm{H}_{2} \mathrm{O}$

Salt (NaCl)
Acetic acid
$\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$

Type	Example	Solute	Solvent
Gas Solutions			
Gas in a gas	Air	Oxygen (gas)	Nitrogen (gas)
Liquid Solutions			
Gas in a liquid	Soda water	Carbon dioxide (gas)	Water (liquid)
	Household ammonia	Ammonia (gas)	Water (liquid)
Liquid in a liquid	Vinegar	Acetic acid (liquid)	Water (liquid)
Solid in a liquid	Seawater	Sodium chloride (solid)	Water (liquid)
(liquid)	Tincture of iodine	Iodine (solid)	Alcohol
Solid Solutions			
Liquid in a solid	Dental amalgam	Mercury (liquid)	Silver (solid)
Solid in a solid	Brass	Zinc (solid)	Copper (solid)
	Steel	Carbon (solid)	Iron (solid)

Identify the solute in each of the following solutions.

A. 2 g sugar and 100 mL water
B. 60.0 mL of ethyl alcohol and 30.0 mL of methyl alcohol
C. 55.0 mL water and 1.50 g NaCl
D. Air: $200 \mathrm{~mL} \mathrm{O}_{2}$ and $800 \mathrm{~mL} \mathrm{~N}_{2}$

Two types of Solutes

Non-electrolyte
When dissolved in water does not conduct electricity

Non-electrolyte

Electrolyte

When dissolved in water can conduct electricity

weak electrolyte

strong electrolyte

Electrolyte conduct electricity in solution?
Dissociation= The splitting of a molecule into smaller molecules, atoms, or ions
Ionization= Separation of atom/molecules into ions Strong Electrolyte-Complete (100\%) dissociation
$\mathrm{NaCl}(s) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{Na}^{+}(a q)+\mathrm{Cl}^{-}(a q)$
Non-reversible reaction

Weak Electrolyte - Incomplete (<100\%) dissociation
$\mathrm{HF}(g) \rightleftarrows \mathrm{H}^{+}(a q)+\mathrm{F}^{-}(a q)$
$\mathrm{CH}_{3} \mathrm{COOH} \rightleftarrows \mathrm{CH}_{3} \mathrm{COO}^{-}(a q)+\mathrm{H}^{+}(a q)$
Reversible reaction

Non-electrolyte does not conduct electricity?

$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(s) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(a q)$ No cations (+) and anions (-) in solution. Exist in solution as neutral molecules.

TABLE 4.1 Classification of Solutes in Aqueous Solution

Glucose

STRONG ELECTROLYTE	WEAK ELECTROLYTE	NONELECTROLYTE
HCl	$\mathrm{CH}_{3} \mathrm{COOH}$	$\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$ (urea)
HNO_{3}	HF	$\mathrm{CH}_{3} \mathrm{OH}$ (methanol)
HClO_{4}	HNO_{2}	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (ethanol)
$\mathrm{H}_{2} \mathrm{SO}_{4}^{*}$	NH_{3}	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ (glucose)
NaOH	$\mathrm{H}_{2} \mathrm{O}^{\dagger}$	$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ (sucrose)
$\mathrm{Ba}(\mathrm{OH})_{2}$		
Ionic compounds		

Pure water contains very few ions, cannot conduct electricity (extremely weak electrolyte)

Water

- electrically neutral molecule
- positive and negative region (pole)
- polar solvent (for ionic compounds)

Hydration

- the process in which an ion is surrounded by water molecules arranged in a specific manner.
- helps to stabilize ions in solution and prevents cations from combining with anions.

Partial negative charge

Partial positive

 chargeHydrogen bonds

When NaCl dissolves in water, Na^{+}ions and Cl^{-}ions are separated from each other and undergo "hydration".

NaCl in water

$\mathrm{H}_{2} \mathrm{O}$

4.2 Precipitation Reactions

Precipitation= Reaction that results in the formation of an insoluble product (precipitate)

Precipitate = insoluble solid that separates from solution
Metathesis/ double-displacement reaction
= reaction that involves the exchange of parts between two compounds

Example: Precipitation of Lead Iodide

$$
\begin{gathered}
\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(a q)+2 \mathrm{NaI}(a q) \longrightarrow \underset{\uparrow}{\longrightarrow} \underset{\substack{\text { Yellow precipitate } \\
\text { (insoluble) }}}{\mathrm{Pbl}_{2}(s)+2 \mathrm{NaNO}_{3}(a q)} .
\end{gathered}
$$

Pbl_{2}

Molecular equation

(species as molecule)
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(a q)+2 \mathrm{NaI}(a q) \longrightarrow \mathrm{PbI}_{2}(s)+2 \mathrm{NaNO}_{3}(a q)$
Ionic equation
(species as dissolved free ions)
$\mathrm{Pb}^{2+}(a q)+2 \mathrm{NO}_{3}(a q)+2 \mathrm{Na}^{+}(a q)+2 \mathrm{I}^{-}(a q)$
$\longrightarrow \mathrm{PbI}_{2}(s)+2 \mathrm{Na}^{+}(a q)+2 \mathrm{NO}_{3}^{-}(a q)$
Na^{+}and $\mathrm{NO}_{3}{ }^{-}$are spectatorions
(does not involved in the overall reaction)
Net ionic equation
(species that actually take part in the reaction)

$$
\mathrm{Pb}^{2+}(a q)+2 \mathrm{l}^{-}(a q) \longrightarrow \mathrm{PbI}_{2}(s)
$$

Pbl_{2}

Writing Net lonic Equations

1. Write the balanced molecular equation.
2. Write the ionic equation showing the strong electrolytes completely dissociated into cations and anions.
3. Cancel the spectator ions on both sides of the ionic equation
4. Check that charges and number of atoms are balanced in the net ionic equation
Write the net ionic equation for the reaction of silver nitrate with sodium chloride.

$$
\begin{gathered}
\mathrm{AgNO}_{3}(a q)+\mathrm{NaCl}(a q) \longrightarrow \mathrm{AgCl}(s)+\mathrm{NaNO}_{3}(a q) \\
\mathrm{Ag}^{+}(a q)+\mathrm{NO}_{3}^{-}(a q)+\mathrm{Na}^{+}(a q)+\mathrm{Cl}^{-}(a q) \\
\mathrm{AgCl}(s)+\mathrm{Na}^{+}(a q)+\mathrm{NO}_{3}^{-}(a q) \\
\mathrm{Ag}^{+}(a q)+\mathrm{Cl}^{-}(a q) \longrightarrow \mathrm{AgCl}(s)
\end{gathered}
$$

Solubility= Maximum amount of solute that will dissolve in a given quantity of solvent in a specific temperature.

Substances \Rightarrow Soluble/ slightly soluble/insoluble Solubility rules - to predict the solubility of ionic compounds

TABLE 4.2 Solubility Rules for Common Ionic Compounds in Water at $25^{\circ} \mathrm{C}$

Soluble Compounds Insoluble Exceptions

Compounds containing alkali metal ions $\left(\mathrm{Li}^{+}, \mathrm{Na}^{+}\right.$,
$\mathrm{K}^{+}, \mathrm{Rb}^{+}, \mathrm{Cs}^{+}$) and the
ammonium ion $\left(\mathrm{NH}_{4}^{+}\right)$
Nitrates $\left(\mathrm{NO}_{3}^{-}\right)$, bicarbonates
$\left(\mathrm{HCO}_{3}^{-}\right)$, and chlorates
$\left(\mathrm{ClO}_{3}^{-}\right)$
$\begin{array}{ll}\text { Halides }\left(\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}\right) & \text {Halides of } \mathrm{Ag}^{+}, \mathrm{Hg}_{2}^{2+}, \text { and } \mathrm{Pb}^{2+} \\ \text { Sulfates }\left(\mathrm{SO}_{4}^{2-}\right) & \text { Sulfates of } \mathrm{Ag}^{+}, \mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Hg}_{2}^{2+}, \text { and } \mathrm{Pb}^{2+}\end{array}$
Insoluble Compounds
Soluble Exceptions
Carbonates $\left(\mathrm{CO}_{3}^{2-}\right)$, phosphates $\left(\mathrm{PO}_{4}^{3-}\right)$, chromates $\left(\mathrm{CrO}_{4}^{2-}\right)$, sulfides (S^{2-})
Hydroxides $\left(\mathrm{OH}^{-}\right)$
Compounds containing alkali metal ions and the ammonium ion

Compounds containing alkali metal ions and the Ba^{2+} ion

4.3 Acid- Base Reactions

Properties of Acids

- Substance that ionize in water to produce $\mathrm{H}+$ ions (Arrhenius)
-Have a sour taste, eg. vinegar (acetic acid), citrus fruits (citric acid).
- Change litmus (plant dyes) from blue to red.
- React with metals $(\mathrm{Zn}, \mathrm{Mg}, \mathrm{Fe})$ to produce H_{2}.
$2 \mathrm{HCl}(a q)+\mathrm{Mg}(s) \longrightarrow \mathrm{MgCl}_{2}(a q)+\mathrm{H}_{2}(g)$
- React with carbonates/bicarbonates to produce CO_{2}
$2 \mathrm{HCl}(a q)+\mathrm{Na}_{2} \mathrm{CO}_{3}(a q) \longrightarrow 2 \mathrm{NaCl}(a q)+\mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(g)$
- Aqueous acid solutions conduct electricity.

Properties of Bases

- Substance that ionize in water to produce OH - ion (Arrhenius)
- Have a bitter taste.
- Feel slippery. Many soaps contain bases.
- Change litmus from red to blue
- Aqueous base solutions conduct electricity.

NH_{3}

OH^{-}

Arrhenius acid is a substance that produces $\mathrm{H}^{+}\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$in water

Arrhenius base is a substance that produces OH^{-}in water

A Bronsted acid is a proton donor
A Bronsted base is a proton acceptor

HCl is Bronsted acid because it donates proton

$$
\begin{aligned}
& \mathrm{HCl}(a q) \longrightarrow \mathrm{H}^{+}(a q)+\mathrm{Cl}^{-}(a q) \\
& \mathrm{HCl}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{Cl}^{-}(a q)
\end{aligned}
$$

$$
\mathrm{H}_{3} \mathrm{O}^{+}=\mathrm{Hydrated} \text { proton (Hydronium) }
$$

NH_{3} is Bronsted base because it accepts proton
$\mathbf{N H}_{3}(a q)+\mathbf{H}^{+}(a q) \rightleftarrows \mathbf{N H}_{4}{ }^{+}(a q)$
$\mathbf{N H}_{3}(a q)+\mathbf{H}_{2} \mathbf{O}(\Lambda) \rightleftarrows \mathbf{N H}_{4}{ }^{+}(a q)+\mathbf{O H}{ }^{-}(a q)$

TABLE 4.3

Some Common Strong and Weak Acids

Strong Acids

Hydrochloric $\quad \mathrm{HCl}$ acid

Hydrobromic HBr acid

Hydroiodic acid

Nitric acid
Sulfuric acid
Perchloric acid
HNO_{3}
$\mathrm{H}_{2} \mathrm{SO}_{4}$
HClO_{4}

Weak Acids
Hydrofluoric HF acid

Nitrous acid $\quad \mathrm{HNO}_{2}$
Phosphoric acid $\quad \mathrm{H}_{3} \mathrm{PO}_{4}$
Acetic acid
$\mathrm{CH}_{3} \mathrm{COOH}$

Identify each of the following species as a

 Brønsted acid, base, or both.
(a) HI , (b) $\mathrm{CH}_{3} \mathrm{COO}^{-}$, (c) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$

$\mathrm{HI}(a q) \longrightarrow \mathrm{H}^{+}(a q)+\mathrm{I}^{-}(a q) \quad$ Brønsted acid
$\mathrm{CH}_{3} \mathrm{COO}^{-}(a q)+\mathrm{H}^{+}(a q) \rightleftarrows \mathrm{CH}_{3} \mathrm{COOH}(a q) \quad$ Brønsted base

$$
\begin{array}{ll}
\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(a q) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{HPO}_{4}^{2-}(a q) & \text { Brønsted acid } \\
\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(a q)+\mathrm{H}^{+}(a q) \rightleftharpoons \mathrm{H}_{3} \mathrm{PO}_{4}(a q) & \text { Brønsted base }
\end{array}
$$

Amphoteric $=$ having both acid and basic properties.

Neutralization Reaction

A reaction between an acid and a base, results in a salt and water .

acid + base \longrightarrow salt + water

$\mathrm{HCl}(a q)+\mathrm{NaOH}(a q) \longrightarrow \mathrm{NaCl}(a q)+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

$$
\begin{gathered}
\mathrm{H}^{+}(a q)+\mathrm{Cl}^{-}(a q)+\mathrm{Na}^{+}(a q)+\mathrm{OH}^{-}(a q) \\
\longrightarrow \mathrm{Na}^{+}(a q)+\mathrm{Cl}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(\eta) \\
\mathrm{H}^{+}(a q)+\mathrm{OH}^{-}(a q) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\Lambda)
\end{gathered}
$$

4.4 Oxidation-Reduction / Redox Reactions

Electron donor

Electron acceptor

Oxidation-Reduction/ Redox Reactions

 (electron transfer reactions)Example: formation of MgO from Mg and O_{2}

Oxidation reaction:"

 half-reaction involves lose $e^{-}$$$
2 \mathrm{Mg} \longrightarrow 2 \mathrm{Mg}^{2+}+4 \mathrm{e}^{-}
$$

Reduction reaction: half-reaction involves gain e^{-}

$$
\mathrm{O}_{2}+4 \mathrm{e}^{-} \longrightarrow 2 \mathrm{O}^{2-}
$$

Half reaction: Reaction that shows e- involved in redox reaction

$$
2 \mathrm{Mg}+\mathrm{O}_{2}+4 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Mg}^{2+}+2 \mathrm{O}^{2-}+4 \mathrm{e}^{-}
$$

$$
2 \mathrm{Mg}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{MgO}
$$

Oxidized

Reducing Agent: donates electrons to O_{2} and causes O_{2} to be reduced

Oxidizing Agent: accepts electrons from Mg and causes Mg to be oxidized

$\mathrm{Zn}(s)+\mathrm{CuSO}_{4}(a q) \longrightarrow \mathrm{ZnSO}_{4}(a q)+\mathrm{Cu}(s)$

$\mathrm{Zn} \longrightarrow \mathrm{Zn}^{2+}+2 \mathrm{e}^{-} \quad \mathrm{Zn}$ is oxidized Zn is the reducing agent $\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cu} \mathrm{Cu}{ }^{2+}$ is reduced Cu^{2+} is the oxidizing agent

Copper wire reacts with silver nitrate to form silver metal. What is the oxidizing agent in the reaction?
$\mathrm{Cu}(s)+2 \mathrm{AgNO}_{3}(a q) \longrightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(a q)+2 \mathrm{Ag}(s)$
$\mathrm{Cu} \longrightarrow \mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \mathrm{Cu}$ is oxidized Cu is the reducing agent $\mathrm{Ag}^{+}+1 \mathrm{e}^{-} \longrightarrow \mathrm{Ag} \quad \mathrm{Ag}^{+}$is reduced Ag^{+}is the oxidizing agent

Chemical Equations are simple.

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

| 0 |
| :---: | :---: | :---: |
| $2 \mathrm{H}_{2}$ |$+\mathrm{O}_{2} \rightarrow+$| +1 | -2 |
| :---: | :---: |
| $2 \mathrm{H}_{2} \mathrm{O}$ | |

$$
4 \mathrm{Fe}+3 \mathrm{O}_{2}
$$

Oxidation number

The charge the atom would have in a molecule (or an ionic compound) if electrons were completely transferred.

1. Free elements (uncombined state) have an oxidation number of zero.
$\mathrm{Na}, \mathrm{Be}, \mathrm{K}, \mathrm{Pb}, \mathrm{H}_{2}, \mathrm{O}_{2}, \mathrm{P}_{4}=0$

2. The oxidation number of oxygen is usually -2. In $\mathrm{H}_{2} \mathrm{O}_{2}$ and $\mathrm{O}_{2}{ }^{2-}$ it is -1 .
3. The oxidation number of hydrogen is +1 except when it is bonded to metals in binary compounds (eg. $\mathrm{LiH}, \mathrm{NaH}, \mathrm{CaH}_{2}$). In these cases, its oxidation number is -1
4. Group IA metals are +1 , IIA metals are +2 and fluorine is always -1 .
5. The sum of the oxidation numbers of all the atoms in a neutral molecule is equal to 0 . The sum of oxidation numbers of all the element in polyatomic ion is equal to the charge of the ion.
6. Oxidation numbers do not have to be integers. Oxidation number of oxygen in the superoxide ion, $\mathrm{O}_{2}{ }^{-}$, is $-1 / 2$.

What are the oxidation numbers of the element in the following?

$\mathrm{HCO}_{3}{ }^{-} \quad \mathrm{IF}_{7} \quad \mathrm{NaIO}_{3} \quad \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$

The Oxidation Numbers of Elements in their Compounds

- Metallic element: +ve oxidation numbers
- Non-metallic elements: +ve/-ve oxidation numbers
- Elements in group 1A-7A can have oxidation numbers=group number Transition metals have many possible oxidation numbers

Redox reaction can be explained in term of

Oxidation	Aspect	Reduction
Loss of electrons	Gain/loss of electron	Gain electrons
Increase in oxidation number	Increase/decrease in oxidation number	Decrease in oxidation number

Types of Oxidation-Reduction Reactions

1. Combination reaction
2. Decomposition reaction
3. Combustion reaction
4. Displacement reaction
5. Disproportionation reaction

Combination Reaction

Two or more substances combine to form a single product.

$$
\begin{aligned}
& \mathrm{A}+\mathrm{B} \longrightarrow \mathrm{C} \\
& 0 \\
& 2 \mathrm{Al}+3 \mathrm{Br}_{2} \longrightarrow 2 \mathrm{AlBr}_{3}^{+3-1}
\end{aligned}
$$

Decomposition Reaction

Breakdown of a compound into two or more components.

$$
\begin{gathered}
\mathrm{C} \\
\longrightarrow \mathrm{~A}+\mathrm{B} \\
2 \mathrm{KClO}_{3}
\end{gathered} \longrightarrow \begin{gathered}
+1-1 \\
2 \mathrm{KCl}+3 \mathrm{O}_{2}
\end{gathered}
$$

Combustion Reaction

Reaction of a substance with oxygen, usually with the release of heat and light to produce a flame

$$
\begin{aligned}
& \mathrm{A}+\mathrm{O}_{2} \longrightarrow \mathrm{~B} \\
& \stackrel{0}{\mathrm{~S}}+\stackrel{0}{\mathrm{O}}_{2} \longrightarrow \stackrel{+4-2}{\mathrm{SO}_{2}}
\end{aligned}
$$

Displacement Reaction

An ion/atom in a compound is replaced by an ion/atom of another element

$$
A+B C \longrightarrow A C+B
$$

1.Hydrogen Displacement
2. Metal Displacement
3. Halogen Displacement

1.Hydrogen Displacement

Displace of H (from water or acid) by metal

$$
\begin{aligned}
& \stackrel{0}{\mathrm{Ca}+2{ }^{+1} \mathrm{H}_{2} \mathrm{O} \longrightarrow \stackrel{+2}{\mathrm{C}} \mathrm{Ca}(\mathrm{OH})_{2}+{ }^{0} \mathrm{H}_{2}} \\
& \mathrm{Zn}+{ }_{2}^{+1} \mathrm{HCl} \longrightarrow \stackrel{+2}{\mathrm{ZnCl}}{ }_{2}+\stackrel{+}{\mathrm{H}}_{2}
\end{aligned}
$$

2. Metal Displacement

Displace of metal by another metal

$$
\begin{aligned}
& +4 \\
& \mathrm{TiCl}_{4}+2 \mathrm{Mg}^{0} \longrightarrow \stackrel{0}{\mathrm{Ti}}+2 \mathrm{MMgCl}_{2} \\
& 0 \\
& \mathrm{Zn}+\stackrel{+2}{\mathrm{CuSO}_{4}} \longrightarrow{ }^{+2} \mathrm{ZnSO}_{4}+\mathrm{Cu}
\end{aligned}
$$

The Activity Series for Metals

(the strength as reducing agent)
$2 \mathrm{~K}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{KOH}+\mathrm{H}_{2}$ (fast)
$\mathrm{Mg}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Mg}(\mathrm{OH})_{2}+\mathrm{H}_{2}$ (slow)
$\mathrm{Cu}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow$ no reaction

Reactivity
$\mathrm{K}>\mathrm{Mg}>\mathrm{Cu}$

$$
\begin{array}{ll}
\mathrm{Li} \rightarrow \mathrm{Li}^{+}+e^{-} & \\
\mathrm{K} \rightarrow \mathrm{~K}^{+}+e^{-} & \text {React with cold } \\
\mathrm{Ba} \rightarrow \mathrm{Ba}^{2+}+2 e^{-} & \text {water to produce } \mathrm{H}_{2} \\
\mathrm{Ca} \rightarrow \mathrm{Ca}^{2+}+2 e^{-} & \\
\mathrm{Na} \rightarrow \mathrm{Na}^{+}+e^{-} & \\
\mathrm{Mg} \rightarrow \mathrm{Mg}^{2+}+2 e^{-} & \\
\mathrm{Al} \rightarrow \mathrm{Al}^{3+}+3 e^{-} & \\
\mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+2 e^{-} & \text {React with steam } \\
\mathrm{Cr} \rightarrow \mathrm{Cr}^{3+}+3 e^{-} & \text {to produce } \mathrm{H}_{2} \\
\mathrm{Fe} \rightarrow \mathrm{Fe}^{2+}+2 e^{-} & \\
\mathrm{Cd} \rightarrow \mathrm{Cd}^{2+}+2 e^{-} & \\
\mathrm{Co} \rightarrow \mathrm{Co}^{2+}+2 e^{-} & \\
\mathrm{Ni} \rightarrow \mathrm{Ni}^{2+}+2 e^{-} & \text {React with acids } \\
\mathrm{Sn} \rightarrow \mathrm{Sn}^{2+}+2 e^{-} & \text {to produce } \mathrm{H}_{2} \\
\mathrm{~Pb} \rightarrow \mathrm{~Pb}^{2+}+2 e^{-} & \\
\mathrm{H}, \mathrm{H}_{2} \rightarrow 2 \mathrm{H}^{+}+2 e^{-} & \\
\mathrm{Cu} \rightarrow \mathrm{Cu}^{2+}+2 e^{-} & \\
\mathrm{Ag} \rightarrow \mathrm{Ag}^{+}+e^{-} & \text {Do not react with water } \\
\mathrm{Hg} \rightarrow \mathrm{Hg}^{2+}+2 e^{-} & \text {or acids to produce } \mathrm{H}_{2} \\
\mathrm{Pt} \rightarrow \mathrm{Pt}^{2+}+2 e^{-} & \\
\mathrm{Au} \rightarrow \mathrm{Au}^{3+}+3 e^{-} &
\end{array}
$$

3. Halogen Displacement Reaction

Displace of halogen by another halogen
The Activity Series for Halogens (the strength as oxidizing agent)

$$
\mathrm{F}_{2}>\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{I}_{2}
$$

$$
\stackrel{0}{\mathrm{C}}_{2}+2 \mathrm{~KB}^{-1} \longrightarrow 2 \mathrm{~K}^{-1} \mathrm{Cl}+\stackrel{0}{\mathrm{Br}_{2}}
$$

$$
\stackrel{0}{\mathrm{C}}_{2}+2 \mathrm{NaI}^{-1} \longrightarrow 2 \mathrm{NaCl}^{-1}+\stackrel{0}{\mathrm{I}}_{2}
$$

$$
\mathrm{I}_{2}+\mathrm{KBr} \longrightarrow \text { no reaction }
$$

4. Disproportionation Reaction

The same element is simultaneously oxidized and reduced.

Classify each of the following reactions.
$\mathrm{Ca}^{2+}+\mathrm{CO}_{3}{ }^{2-} \longrightarrow \mathrm{CaCO}_{3}$ Precipitation
$\mathrm{BaCl}_{2}+\mathrm{NaSO}_{4} \longrightarrow \mathrm{NaCl}_{2}+\mathrm{BaSO}_{4}$
Metathesis/
Double
displacement
$\mathrm{Zn}+2 \mathrm{HCl} \longrightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$ Redox (H_{2} Displacement)
$\mathrm{Ca}+\mathrm{F}_{2} \longrightarrow \mathrm{CaF}_{2}$
Redox (Combination)
$2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{O}_{2}+2 \mathrm{H}_{2}$
Redox (decomposition)
$2 \mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
Redox (disproportionation)

4.4 Concentration of Solutions

Concentration= amount of solute in a given quantity of solution.

Molarity/ molar concentration (M)
The number of moles of solute in 1 liter (L) of solution

Unit= moles/liter (mol/L)

$$
M=\text { molarity }=\frac{\text { moles of solute }(\mathrm{mol})}{\text { liters of solution }(\mathrm{L})} \quad M=\frac{n}{V}
$$

moles $=$ molarity ($\mathrm{mol} / \mathrm{L}$) \times volume (L)

$$
=M V
$$

Dilution is the procedure for preparing a less concentrated solution from a more concentrated solution.

Moles of solute before dilution (i)
$M_{i} V_{i}$

Moles of solute after dilution (f)

What mass of KI is required to make 500 mL of a 2.80 MKI solution?
volume of KI solution $\xrightarrow{M \mathrm{KI}}$ moles $\mathrm{KI} \xrightarrow{\mathcal{M} \mathrm{KI}}$ grams KI

$$
\text { 500. } \mathrm{m} \text { K } L \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}} \times \frac{2.80 \text { mol } \mathrm{KI}}{1 \text { Lsoln }} \times \frac{166 \mathrm{~g} \mathrm{KI}}{1 \mathrm{molkl}}=232 \mathrm{~g} \mathrm{KI}
$$

How would you prepare 60.0 mL of $0.200 \mathrm{MHNO}_{3}$ from a stock solution of $4.00 \mathrm{MHNO}_{3}$?

$$
M_{\mathrm{i}} \mathrm{~V}_{\mathrm{i}}=M_{\mathrm{f}} \mathrm{~V}_{\mathrm{f}}
$$

$M_{\mathrm{i}}=4.00 \mathrm{M} \quad M_{\mathrm{f}}=0.200 M \quad \mathrm{~V}_{\mathrm{f}}=0.0600 \mathrm{~L} \quad \mathrm{~V}_{\mathrm{i}}=? \mathrm{~L}$
$\mathrm{V}_{\mathrm{i}}=\frac{M_{\mathrm{f}} \mathrm{V}_{\mathrm{f}}}{M_{\mathrm{i}}}=\frac{0.200 M \times 0.0600 \mathrm{~L}}{4.00 M}=0.00300 \mathrm{~L}=3.00 \mathrm{~mL}$

Dilute 3.00 mL of HNO_{3} with water to a total volume of 60.0 mL .

4.5 Titration

Titrations -A solution of known concentration (standard solution) is added gradually to another solution of unknown concentration until the chemical reaction between the two solutions is complete.
Equivalence point - the point at which the reaction is complete
End point - the point at which the indicator permanently changes its color
Indicator - substance that changes color at (or near) the equivalence point (eg. phenolphthalein)
Slowly add standardized base to unknown acid until the indicator changes color

phenolphthalein

Titrations can be used in the analysis of

Acid-base reactions (transfer of H^{+})
$\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Na}_{2} \mathrm{SO}_{4}$
$2 \mathrm{H}^{+}+2 \mathrm{OH}^{-} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}$

Redox reactions (transfer of e^{-})

$10 \mathrm{FeSO}_{4}+2 \mathrm{KMnO}_{4}+8 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow 5 \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+2 \mathrm{MnSO}_{4}$ $+\mathrm{K}_{2} \mathrm{SO}_{4}+8 \mathrm{H}_{2} \mathrm{O}$
$5 \mathrm{Fe}^{2+}+\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+} \longrightarrow 5 \mathrm{Fe}^{3+}+\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$

What volume of a 1.420 MNaOH solution is required to titrate 25.00 mL of a $4.50 \mathrm{MH}_{2} \mathrm{SO}_{4}$ solution?

$\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Na}_{2} \mathrm{SO}_{4}$
 volume acid $\underset{\text { acid }}{M}$ moles acid $\underset{\text { coef. }}{\text { rxn }}$ moles base $\xrightarrow[\text { base }]{M}$ volume base

16.42 mL of $0.1327 \mathrm{M} \mathrm{KMnO}_{4}$ solution is needed to oxidize 25.00 mL of an acidic FeSO_{4} solution. What is the molarity of the iron solution?

$$
16.42 \mathrm{~mL}=0.01642 \mathrm{~L} \quad 25.00 \mathrm{~mL}=0.02500 \mathrm{~L}
$$

$$
0.01642 \mathrm{~L}^{-x} \frac{0.1327 \mathrm{motkinnO}_{4}}{1 \mathrm{~L}} \times \frac{5 \mathrm{~mol} \mathrm{Fe}^{2+}}{1 \mathrm{moH}^{\mathrm{KNVO}_{4}}} \times \frac{1}{0.02500 \mathrm{~L} \mathrm{Fe}^{2+}}=0.436 \mathrm{M}
$$

Chapter 5

Gases

5.1 SUBSTANCES THAT EXIST ASGASES
5.2 RRESSURE OF A GAS 5.3 THE GAS LAWS 5.4 THE IDEAL CAS EQUATIÔN 5.5 GAS STOIGHIOMETRY 5.6 DALTON'S LAWGO PARTIAL PRESSURES 5.7 THE KINETIC MOLEGELAR THEORY OF GASES 5.8 DEVIATION FROM IDEAL BEHAVIOR?

5.1 Substances that exist as

gases

Elemental state at $25^{\circ} \mathrm{C}$ and 1 atmosphere

Physical Characteristics of Gases

Take the volume and shape of their containers
Most compressible
Mix evenly and completely when confined to the same container
Low Densities

	State		
Property	Solid	Liquid	Gas
Density	High	High (like solids)	Low
Shape	Fixed	Takes shape of low part of container	Expands to fill the container
Compressibility	Small	Small	Large

TABLE 5.1 Some Substances Found as Gases at 1 atm and $25^{\circ} \mathrm{C}$

Elements

H_{2} (molecular hydrogen)
N_{2} (molecular nitrogen)
O_{2} (molecular oxygen)
O_{3} (ozone)
F_{2} (molecular fluorine)
Cl_{2} (molecular chlorine)
He (helium)
Ne (neon)
Ar (argon)
Kr (krypton)
Xe (xenon)
Rn (radon)

Compounds

HF (hydrogen fluoride)
HCl (hydrogen chloride)
HBr (hydrogen bromide)
HI (hydrogen iodide)
CO (carbon monoxide)
CO_{2} (carbon dioxide)
NH_{3} (ammonia)
NO (nitric oxide)
NO_{2} (nitrogen dioxide)
$\mathrm{N}_{2} \mathrm{O}$ (nitrous oxide)
SO_{2} (sulfur dioxide)
$\mathrm{H}_{2} \mathrm{~S}$ (hydrogen sulfide)
HCN (hydrogen cyanide)*

[^0]
5.2 Pressure of a gas

Pressure of a gas

$$
\begin{aligned}
\text { (force } & =\text { mass } \times \text { acceleration }) \\
& =\mathrm{kg} \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

SI Units of Pressure

1 pascal $(\mathrm{Pa})=1 \mathrm{~N} / \mathrm{m}^{2}$
Standard atmospheric pressure (1 atm)
= the pressure that support a column of mercury exactly 760 mmHg high at $0{ }^{\circ} \mathrm{C}$ at sea level
$=760 \mathrm{mmHg}$
= 760 torr
$=101,325 \mathrm{~Pa}$
$=101.325 \mathrm{KPa}$

```
1 pascal (Pa) = 1 N/m}\mp@subsup{}{}{2
1 atm = 760 mmHg = 760 torr = 101,325 Pa
```


Barometer

A barometer

- measures the pressure exerted by the gases in the atmosphere.
- indicates atmospheric pressure as the height in mm of the mercury column.
A. What is 475 mm Hg expressed in atm?

$475 \mathrm{mmHg} \quad x \underline{1 \mathrm{~atm}}=0.625 \mathrm{~atm}$
 760 mm Hg

B. The pressure of a tire is measured as 2.00 atm. What is this pressure in $\mathbf{m m ~ H g}$?
$2.00 \mathrm{~atm} \times \frac{760 \mathrm{~mm} \mathrm{Hg}}{1 \mathrm{~atm}}=1520 \mathrm{~mm} \mathrm{Hg}$

Atmospheric pressure

= pressure exerted by earth's atmosphere. eg drink liquid through a straw

Properties That Describe a Gas

Gases are described in terms of four properties:
pressure (\mathbf{P}), volume(\mathbf{V}), temperature(\mathbf{T}), and amount(\mathbf{n}).

Property	Description	Unit(s) of Measurement
Pressure (P)	The force exerted by gas against the walls of the container	atmosphere (atm); mm Hg; torr; pascal
Volume (V)	The space occupied by the gas	liter (L); milliliter ($\mathbf{m L}$)
Temperature (T)	Determines the kinetic energy and rate of motion of the gas particles	Celsius (${ }^{\circ} \mathbf{C}$); Kelvin (K) required in calculations
Amount (n)	The quantity of gas present in a container	grams (g); moles (n) required in calculations

- There are three variables that affect gas pressure:

1) The volume of the container.
2) The temperature of the gas.
3) The number of molecules of gas in the container.

5.3 The Gas Laws

The Gas Law

The relationship between volume, pressure, temperature and moles

Boyle' s Law
Charles's Law
Avogadro's Law

The Ideal Gas Equation combines several of these laws into a single relationship.

Boyle's Law

The volume of a fixed amount of gas at constant temperature is inversely proportional to the gas pressure

$$
\begin{array}{lr}
V \propto \frac{1}{P} & \begin{array}{c}
\text { T constant } \\
\text { n constant }
\end{array} \\
V=\mathrm{K} \frac{1}{P} & \mathrm{~K}=\text { proportionality constant }
\end{array}
$$

Boyle's Law

- if volume decreases, the pressure increases.

A sample of chlorine gas occupies a volume of 946 mL at a pressure of 726 mmHg . What is the pressure of the gas (in mmHg) if the volume is reduced at constant temperature to 154 mL ?

$$
\begin{gathered}
P \times V=\text { constant } \\
P_{1} \times V_{1}=P_{2} \times V_{2} \\
P_{1}=726 \mathrm{mmHg} \quad P_{2}=? \\
V_{1}=946 \mathrm{~mL} \quad V_{2}=154 \mathrm{~mL} \\
P_{2}=\frac{P_{1} \times V_{1}}{V_{2}}=\frac{726 \mathrm{mmHg} \times 946 \mathrm{~mL}}{154 \mathrm{~mL}}=4460 \mathrm{mmHg}
\end{gathered}
$$

Charles' \& Gay-Lussac's Law

$-273.15^{\circ} \mathrm{C}=$ Absolute zero
\downarrow
$T(\mathrm{~K})=t\left({ }^{\circ} \mathrm{C}\right)+273.15 \quad$ Kelvin temperature scale

Charles' Law

the volume of a fixed amount of gas at constant pressure is directly proportional to the absolute temperature (in Kelvin) of the gas
$V \alpha T$

$$
V=k T \text { or } \frac{V}{T}=k
$$

$$
\frac{V_{1}}{T_{1}}=k=\frac{V_{2}}{T_{2}}
$$

$$
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}
$$

P and n are constant

Temperature must be in Kelvin

Charles' Law

$$
\begin{array}{ll}
T=200 \mathrm{~K} & T=400 \mathrm{~K} \\
V=1 \mathrm{~L} & V=2 \mathrm{~L}
\end{array}
$$

Temperature, K

If temperature of a gas increases, its volume increases.

- Below is an illustration of Charles's law.
- As a balloon is cooled from room temperature with liquid nitrogen $\left(-196^{\circ} \mathrm{C}\right)$, the volume decreases.

A balloon has a volume of 785 mL at $21^{\circ} \mathrm{C}$. If the temperature drop to $0^{\circ} \mathrm{C}$, what is the new volume of the balloon (P constant)?

$$
\begin{aligned}
\underline{V}_{1} & =\underline{V}_{2} \\
\mathrm{~V}_{2} & =\underline{V}_{1-} \times \underline{I}_{2} \\
& =785 \mathrm{~mL} \times \frac{(0+273.15) \mathrm{K}}{(21+273.15) \mathrm{K}}=729 \mathrm{~mL}
\end{aligned}
$$

Avogadro's Law

At constant pressure and temperature, volume of gas is directly proportional to the number of moles of the gas
$V \alpha$ number of moles (n)

$$
\begin{aligned}
& V=\mathrm{k} n \quad \mathrm{~T} \text { and } \mathrm{P} \text { are constant } \\
& \underline{\mathrm{V}}=\mathrm{k} \\
& \frac{\mathrm{~V}}{1} \\
& \underline{n}_{1} \\
& =\frac{\mathrm{V}}{\underline{\mathrm{~V}}_{2}} \\
& n_{2}
\end{aligned}
$$

If the number of moles (n) of gas increase, the volume increase

Avogadro's Law

Ammonia burns in oxygen to form nitric oxide (NO) and water vapor. How many volumes of NO are obtained from one volume of ammonia at the same temperature and pressure?

$$
\begin{gathered}
4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \longrightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O} \\
1 \text { mole } \mathrm{NH}_{3} \longrightarrow 1 \text { mole } \mathrm{NO} \\
\text { At constant } T \text { and } P
\end{gathered}
$$

1 volume $\mathrm{NH}_{3} \longrightarrow 1$ volume NO

If 0.75 mole helium gas occupies a volume of 1.5 L , what volume will 1.2 moles helium occupy at the same temperature and pressure?

$$
\begin{aligned}
\mathrm{V}_{2} & =\mathrm{V}_{1} \times \underline{n}_{2} \\
\mathrm{~V}_{2} & =1.5 \mathrm{~L} \times \frac{1.2 \text { moles He }}{0.75 \text { mole He }} \\
& =2.4 \mathrm{~L}
\end{aligned}
$$

Summary of Gas Laws

Heating or cooling a gas at constant pressure

Charles Law

Charles's Law

$$
V=\left(\frac{n R}{P}\right) T \quad \frac{n R}{P} \text { is constant }
$$

Avogadro's Law

Dependence of volume on amount of gas at constant temperature and pressure

5.4 The ideal gas equation

Ideal Gas Equation

Boyle's law: $\mathrm{V} \alpha \frac{1}{P}$ (at constant n and T)
Charles' law: $V \alpha T$ (at constant n and P)
Avogadro's law: $\mathrm{V} \alpha n$ (at constant P and T)
The volume of a gas is inversely proportional to pressure and directly proportional to temperature and the number of moles of molecules

$$
\begin{array}{ll}
V \alpha \frac{n T}{P} & \begin{array}{l}
R \text { is the gas constant } \\
V=R \frac{n T}{P}
\end{array} \\
\begin{array}{ll}
\mathrm{P}=\text { pressure }(\mathrm{atm}) \\
\mathrm{V}=\text { volume }(\mathrm{L}) \\
\mathrm{n}=\text { no. of moles }(\mathrm{mol}) \\
\mathrm{R}=\text { ideal gas constant }=0.08206\left(\mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)
\end{array} \\
\mathrm{V} & \begin{array}{l}
\mathrm{T}=\text { temperature }(\mathrm{K})
\end{array}
\end{array}
$$

Ideal Gas

Ideal gas is a hypothetical gas whose pressure-volume-temperature behavior can be completely accounted for by the ideal gas equation

At $0^{\circ} \mathrm{C}$ and 1 atm pressure, many real gases behave like an ideal gas

Standard Temperature and Pressure (STP)

The conditions $0^{\circ} \mathrm{C}(273.15 \mathrm{~K})$ and 1 atm are called standard temperature and pressure (STP).

Experiments show that at STP, 1 mole of an ideal gas occupies 22.414 L.

$$
P V=n R T
$$

$R=\frac{P V}{n T}=\frac{(1 \mathrm{~atm})(22.414 \mathrm{~L})}{(1 \mathrm{~mol})(273.15 \mathrm{~K})}$
$R=0.082057 \mathrm{~L} \cdot \mathrm{~atm} /(\mathrm{mol} \cdot \mathrm{K})$
$R=0.0821 \quad L \cdot a t m /(\mathrm{mol} \cdot \mathrm{K})$

What is the volume (in liters) occupied by 49.8 g of HCl at STP?

$$
\begin{aligned}
& T=0^{\circ} \mathrm{C}=273.15 \mathrm{~K} \\
& P=1 \mathrm{~atm} \\
& n=49.8 \mathrm{~g} \times \frac{1 \mathrm{~mol} \mathrm{HCl}}{36.45 \mathrm{~g} \mathrm{HCl}}=1.37 \mathrm{~mol}
\end{aligned}
$$

$$
\begin{aligned}
P V & =n R T \\
V & =\frac{n R T}{P} \\
V & =\frac{1.37 \text { mot } \times 0.0821 \frac{\mathrm{~L} \cdot 2 \mathrm{tan}}{\text { mot:K}} \times 273.15 \mathrm{~K}}{1 \mathrm{~atm}} \\
V & =30.7 \mathrm{~L}
\end{aligned}
$$

Molar Volume ($\mathbf{V}_{\mathbf{m}}$)

At STP (T=273.15 K, P=1 atm), 1 mole of a gas occupies a volume of 22.41 L (molar volume).

TABLE 5.1 Volume Occupied by 1 mol of Several Different Gases

 at $0^{\circ} \mathrm{C}$ and 1 atm Pressure| Gas | Formula | Formula mass (amu) | Volume $(\mathrm{L})^{*}$ |
| :--- | :--- | :--- | :--- |
| hydrogen | H_{2} | 2.016 | 22.43 |
| helium | He | 4.003 | 22.42 |
| nitrogen | N_{2} | 28.02 | 22.38 |
| carbon monoxide | CO | 28.01 | 22.38 |
| oxygen | O_{2} | 32.00 | 22.40 |

*The volumes are expressed to four significant figures to show the variability that accompanied these experimentally determined values.

Using Molar Volume

Moles of gas

Molar volume
$22.4 \mathrm{~L} / \mathrm{mol}$

Volume (L) of gas

What is the volume occupied by 2.75 moles \mathbf{N}_{2} gas at STP?
2.75 moles $\mathrm{N}_{2} \quad$ x $\quad \underline{22.41 \mathrm{~L}}=61.63 \mathrm{~L}$

1 mole
How many grams of He are present in 8.00 L of gas at STP?
$8.00 \mathrm{Lx} \frac{1 \text { mole He }}{22.41 \mathrm{~L}} \times \frac{4.00 \mathrm{~g} \mathrm{He}}{1 \text { mole He }}=1.43 \mathrm{~g} \mathrm{He}$

Combined Gas Law

$$
\begin{aligned}
P V=n R T & \text { The combined gas law uses } \\
\frac{P V}{n T}=R & \text { Boyle's Law, Charles' Law, } \\
\frac{P_{1} V_{1}}{n_{1} T_{1}}=\frac{P_{2} V_{2}}{n_{2} T_{2}} &
\end{aligned}
$$

Argon is an inert gas used in lightbulbs to retard the vaporization of the filament. A certain
lightbulb containing argon at 1.20 atm and $18^{\circ} \mathrm{C}$ is heated to $85^{\circ} \mathrm{C}$ at constant volume. What is the final pressure of argon in the lightbulb (in atm)?

$$
P V=n R T \quad n, V \text { and } R \text { are constant }
$$

$$
\begin{array}{lll}
\frac{n R}{V}=\frac{P}{T}=\mathrm{constant} & P_{1}=1.20 \mathrm{~atm} & P_{2}=? \\
& T_{1}=291 \mathrm{~K} & T_{2}=358 \mathrm{~K}
\end{array}
$$

$$
\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}
$$

$$
P_{2}=P_{1} \times \frac{T_{2}}{T_{1}}=1.20 \mathrm{~atm} \times \frac{358 K}{291 K}=1.48 \mathrm{~atm}
$$

A gas has a volume of 675 mL at $35^{\circ} \mathrm{C}$ and 646 mm Hg pressure. What is the volume (mL) of the gas at $-95^{\circ} \mathrm{C}$ and a pressure of 802 mm Hg (n constant)?

$$
\begin{array}{ll}
\mathrm{T}_{1}=308 \mathrm{~K} & \mathrm{~T}_{2}=-95^{\circ} \mathrm{C}+273=178 \mathrm{~K} \\
\mathrm{~V}_{1}=675 \mathrm{~mL} & \mathrm{~V}_{2}=? ? ? \\
\mathrm{P}_{1}=646 \mathrm{~mm} \mathrm{Hg} & \mathrm{P}_{2}=802 \mathrm{~mm} \mathrm{Hg}
\end{array}
$$

$$
\begin{aligned}
& \frac{P_{1}}{T_{1}} \underline{V}_{1}=\frac{P_{2}}{T_{2}} \underline{V}_{2} \\
& V_{2}=V_{1} \times \frac{P_{1}}{P_{2}} \times \frac{T_{2}}{T_{1}} \\
& V_{2}=675 \mathrm{~mL} \times \frac{646 \mathrm{~mm} \mathrm{Hg} \times 178 \mathrm{~K}}{802 \mathrm{~mm} \mathrm{Hg} \times 308 \mathrm{~K}}=314 \mathrm{~mL}
\end{aligned}
$$

Density (d) and Molar Mass (\mathcal{M}) Calculations

$$
\begin{aligned}
& P V=n R T \\
& P=\frac{n}{V} R T \\
& P=\frac{m}{\mathcal{M}} \frac{1}{V} R T \quad \begin{array}{l}
\quad m \text { is the mass of the gas in } \mathrm{g} \\
P
\end{array} \\
& P=\frac{m}{V} \frac{1}{\mathcal{M}} R T \quad d=\frac{m}{V} \text { (in g/L) } \\
& P \mathcal{M}=d R T \quad d=\frac{P \mathcal{M}}{R T}
\end{aligned}
$$

A 2.10-L vessel contains 4.65 g of a gas at 1.00 atm and $27.0^{\circ} \mathrm{C}$. What is the molar mass of the gas?

$$
\begin{gathered}
\mathcal{M}=\frac{d R T}{P} \quad d=\frac{m}{V}=\frac{4.65 \mathrm{~g}}{2.10 \mathrm{~L}}=2.21 \frac{\mathrm{~g}}{\mathrm{~L}} \\
\mathcal{M}=\frac{2.21 \frac{\mathrm{~g}}{\mathrm{~L}} \times 0.0821 \frac{\mathrm{~L} \text { 人atm }}{\mathrm{mol} \cdot \mathrm{~K}} \times 300.15 \mathrm{~K}}{1 \mathrm{~atm}}
\end{gathered}
$$

$\mathcal{M}=54.5 \mathrm{~g} / \mathrm{mol}$

5.5 Gas Stoichiometry

Gas Stoichiometry

Calculation about amounts (moles) or volumes of reactants and products

What volume (L) of O_{2} gas is needed to completely react with 15.0 g of aluminum at STP?
$4 \mathrm{Al}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$
mass of $\mathrm{Al} \longrightarrow$ mole of $\mathrm{Al} \longrightarrow$ mole of $\mathrm{O}_{\mathbf{2}} \longrightarrow$ volume of $\mathrm{O}_{\mathbf{2}}(\mathrm{STP})$
$15.0 \mathrm{~g} \mathrm{Al} \times \underset{27.0 \mathrm{~g} \mathrm{Al}}{\frac{1 \text { mole Al }}{27}} \times \frac{3 \text { moles } \mathrm{O}_{2}}{4 \text { moles Al }} \times \frac{22.41 \mathrm{~L}}{1 \text { mole } \mathrm{O}_{2}}=9.34 \mathrm{~L} \mathrm{O}_{2}$

What is the volume of CO_{2} produced at $37^{\circ} \mathrm{C}$ and 1.00 atm when 5.60 g of glucose are used up in the reaction:

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(s)+6 \mathrm{O}_{2}(g) \longrightarrow 6 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

$\mathrm{g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \longrightarrow \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \longrightarrow \mathrm{~mol} \mathrm{CO}_{2} \longrightarrow V \mathrm{CO}_{2}$
$5.60 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \times \frac{1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{180 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}} \times \frac{6 \mathrm{~mol} \mathrm{CO}_{2}}{1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}=0.187 \mathrm{~mol} \mathrm{CO}_{2}$

$$
V=\frac{n R T}{P}=\frac{0.187 \mathrm{~mol} \times 0.0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}} \times 310.15 \mathrm{~K}}{1.00 \mathrm{~atm}}=4.76 \mathrm{~L}
$$

5.6 Dalton's Law of Partial Pressures

$$
=2.0 \mathrm{~atm}+4.0 \mathrm{~atm}
$$

$$
P_{\mathrm{He}}=2.0 \mathrm{~atm} \quad P_{\mathrm{Ar}}=4.0 \mathrm{~atm}
$$

$$
=6.0 \mathrm{~atm}
$$

$$
P_{\text {total }}=P_{\mathrm{He}}+P_{\mathrm{Ar}}
$$

The partial pressure of a gas

-is the pressure of each gas in a mixture.
-is the pressure that gas would exert if it were by itself in the container.

Dalton's Law of Partial Pressures states that the total pressure of a gaseous mixture is equal to the sum of the individual pressures of each gas.

$$
\mathrm{P} 1+\mathrm{P} 2+\mathrm{P} 3+\ldots=\mathrm{P} \text { total }
$$

The pressure depends on the total number of gas particles, not on the types of particles.

Dalton's Law of Partial Pressures

V and T are constant

P_{2}

$$
P_{\text {total }}=P_{1}+P_{2}
$$

Typical composition of air

Partial
Pressure
($\mathbf{m m ~ H g}$)
594.0
160.0
$\left.\begin{array}{l}0.3 \\ 5.7\end{array}\right\}$
760.0

- An atmospheric sample contains nitrogen, oxygen, and argon. If the partial pressure of nitrogen is 587 mm Hg, oxygen is 158 mm Hg, and argon is 7 mm Hg , what is the barometric pressure?

$$
P_{\text {total }}=P_{\text {nitrogen }}+P_{\text {oxygen }}+P_{\text {argon }}
$$

$P_{\text {total }}=587 \mathrm{~mm} \mathrm{Hg}+158 \mathrm{~mm} \mathrm{Hg}+7 \mathrm{~mm} \mathrm{Hg}$

$$
P_{\text {total }}=752 \mathrm{~mm} \mathrm{Hg}
$$

A scuba tank contains O_{2} with a pressure of 0.450 atm and He at 855 mm Hg . What is the total pressure in mm Hg in the tank?
$0.450 \mathrm{~atm} \times \frac{760 \mathrm{~mm} \mathrm{Hg}}{1 \mathrm{~atm}}=342 \mathrm{~mm} \mathrm{Hg}=P \mathrm{O}_{2}$

$$
P_{\text {total }}=P_{\mathrm{O}_{2}}+P_{\mathrm{He}}
$$

$$
P_{\text {total }}=342 \mathrm{~mm} \mathrm{Hg}+855 \mathrm{~mm} \mathrm{Hg}
$$

$$
=1197 \mathrm{~mm} \mathrm{Hg}
$$

Consider a case in which two gases, A and B, are in a container of volume V .

$$
\begin{array}{ll}
P_{\mathrm{A}}=\frac{n_{\mathrm{A}} \mathrm{RT}}{V} & n_{\mathrm{A}} \text { is the number of moles of } \mathrm{A} \\
P_{\mathrm{B}}=\frac{n_{\mathrm{B}} \mathrm{RT}}{V} & n_{\mathrm{B}} \text { is the number of moles of } \mathrm{B} \\
P_{\mathrm{T}}=P_{\mathrm{A}}+P_{\mathrm{B}} & X_{\mathrm{A}}=\frac{n_{\mathrm{A}}}{n_{\mathrm{A}}+n_{\mathrm{B}}} \quad X_{\mathrm{B}}=\frac{n_{\mathrm{B}}}{n_{\mathrm{A}}+n_{\mathrm{B}}} \\
P_{\mathrm{A}}=X_{\mathrm{A}} P_{\mathrm{T}} & P_{\mathrm{B}}=X_{\mathrm{B}} P_{\mathrm{T}}
\end{array}
$$

$$
P_{i}=X_{i} P_{\mathrm{T}}
$$

mole fraction $\left(X_{i}\right)=\frac{n_{i}}{n_{T}}$

A sample of natural gas contains 8.24 moles of $\mathrm{CH}_{4}, 0.421$ moles of $\mathrm{C}_{2} \mathrm{H}_{6}$, and 0.116 moles of $\mathrm{C}_{3} \mathrm{H}_{8}$. If the total pressure of the gases is 1.37 atm , what is the partial pressure of propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$?

$$
\begin{aligned}
& P_{i}=X_{i} P_{\mathrm{T}} \quad P_{\mathrm{T}}=1.37 \mathrm{~atm} \\
& X_{\text {propane }}=\frac{0.116}{8.24+0.421+0.116}=0.0132 \\
& P_{\text {propane }}=0.0132 \times 1.37 \mathrm{~atm}=0.0181 \mathrm{~atm}
\end{aligned}
$$

Collecting a Gas over Water

5.7 Kinetic Molecular Theory of Gases

Kinetic Molecular Theory of Gases

This theory explains the behavior of gases

1. Gases are composed of molecules that are separated by large distances. The molecules (" point ") possess mass but have negligible volume.
2. Gas molecules are in constant motion in random directions, and they frequently collide with one another. Collisions among molecules are perfectly elastic (energy can be transferred between molecules but no energy is gained or lost during collision).
3. Gas molecules exert neither attractive nor repulsive forces on one another.
4. Energy of motion is called kinetic energy (KE). The average KE of the molecules is proportional to absolute T. Any two gases at the same T will have the same average KE.

Kinetic Molecular Theory of Gases

$$
\begin{array}{rlrl}
\overline{\mathrm{KE}} & =1 / 2 m \overline{u^{2}} & & m=\text { mass of the molecule } \\
\overline{\mathrm{KE}} & \propto T & \overline{u^{\overline{2}}}=\text { mean square speed } \\
\frac{1}{2} m \overline{u^{2}} & \propto T & C=\text { proportionality constant } \\
\frac{1}{2} m \overline{u^{2}}=C T &
\end{array}
$$

\therefore The T of a gas is a measure of the average KE of the molecules

Maxwell speed distribution curves

The distribution of gas molecule speeds at various temperature $\uparrow \mathrm{T}, \uparrow$ number of molecules moving at high speed

Root-mean-square (rms) speed ($u_{r m s}$)

Average molecular speed of a gas

$$
u_{\mathrm{rms}}=\sqrt{\frac{3 R T}{\mathcal{M}}}
$$

Unit $=\mathrm{m} / \mathrm{s}$
$u_{\text {rms }}$ of
Tin K
\mathcal{M} in kg/mol
$\mathrm{R}=8.314 \mathrm{~J} / \mathrm{K} . \mathrm{mol}$
$u_{\text {rms }}$ of smaller mass (lighter) gas
 (heavier) gas

Gas diffusion is the gradual mixing of molecules of one gas with molecules of another by virtue of their kinetic properties.

molecular path

Gas diffusion is the process by which gas under pressure escapes from one compartment of a container to another by passing through a small opening.

5.8 Deviations from Ideal Behavior

Ideal gas (behave ideally) Real gas (behave non-ideally)

TABLE 5.4

Van der Waals equation

van der Waals Constants of Some Common Gases

This equation is a modification of the ideal gas equation. It accounts for the attractive forces and molecular volume

$$
(\underbrace{P+\frac{a n^{2}}{V^{2}}}_{\begin{array}{c}
\text { corrected } \\
\text { pressure }
\end{array}})(\underbrace{V-n b)}_{\begin{array}{c}
\text { corrected } \\
\text { volume }
\end{array}}=n R T
$$

$\mathrm{a}, \mathrm{b}=$ constant
$a \quad b$

Gas	$\left(\frac{\mathbf{a t m} \cdot \mathbf{L}^{2}}{\mathbf{m o l}^{2}}\right)$	$\left(\frac{\mathbf{L}}{\mathbf{m o l}}\right)$
He	0.034	0.0237
Ne	0.211	0.0171
Ar	1.34	0.0322
Kr	2.32	0.0398
Xe	4.19	0.0266
H_{2}	0.244	0.0266
$\mathrm{~N}_{2}$	1.39	0.0391
O_{2}	1.36	0.0318
Cl_{2}	6.49	0.0562
CO_{2}	3.59	0.0427
CH_{4}	2.25	0.0428
CCl_{4}	20.4	0.138
NH_{3}	4.17	0.0371
$\mathrm{H}_{2} \mathrm{O}$	5.46	0.0305

Chapter 6 Thermochemistry

6.1 The nature of energy and types of energy
6.2 Energy changes in chemical reactions
6.3 Introduction to thermodynamics
6.4 Enthalpy
6.4 Calorimetry
6.5 Standard enthalpy of formation and reaction 6.6 Heat of solution and dilution

6.1 The nature of energy and types of energy

Energy is the capacity to do work.
Work(w) = energy used to move an object over some distance
$=$ force \times distance ($F \times d$)
$=1 \mathrm{kgm}^{2} / \mathrm{s}^{2}$
$=1 \mathrm{Nm}$
$=1 \mathrm{~J}$
SI unit = Joule (J)

One joule of work is done when a force of one Newton is applied over a distance of one metre

```
Velocity ( \(\mathrm{m} / \mathrm{s}\) )
Acceleration ( \(\mathrm{m} / \mathrm{s}^{2}\) )
Force \(=\) mass \((\mathrm{kg}) \times\) acceleration \(\left(\mathrm{m} / \mathrm{s}^{2}\right)\)
\(=\mathrm{kgm} / \mathrm{s}^{2}\)
\(=\mathrm{N}\)
```


Types of energy

- Kinetic energy is the energy of motion
-Potential energy is the energy associated with an object's position
-Radiant energy comes from the sun and is earth's primary energy source
- Thermal energy is the energy associated with the random motion of atoms and molecules
-Chemical energy is the energy stored within the bonds of chemical substances
- Nuclear energy is the energy stored within the collection of neutrons and protons in the atom

6.2 Energy changes in chemical reactions

Law of conservation of energy

-Energy can converted from one form to another or transferred from one object to another.
-Total amount of energy in the universe remains constant.
-Energy cannot be created or destroyed. Energy conversion

Energy Transformations

electrical energy to light energy to thermal and radiant energy

Potential energy to kinetic energy

Almost all chemical reactions absorb/produce energy in the form of heat

Heat is the transfer of thermal energy (molecular motion) between two bodies that are at different temperatures (Heat flow)

Temperature is a measure of the thermal energy. Temperature * Thermal Energy

WHAT IS HEAT

System and Surroundings

System - the specific part of the universe that is of interest in the study. Systems usually include substances involved in chemical and physical changes.
Surroundings - the rest of the universe outside the system.
 or vice versa.

Exchange: mass \& energy $\begin{array}{lll}\text { open } & \text { closed } & \text { isolated } \\ \text { energy } & \text { energy } & \text { nothing }\end{array}$

System and Surrounding

Universe $=$ System + Surroundings

OR
Surroundings
(flask and subtances
in contact with outside
of flask)

Exothermic process is any process that gives off heat transfers thermal energy from the system to the surroundings.

Surroundings

$$
2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\eta+\text { energy }
$$

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\text { energy }
$$

Endothermic process is any process in which heat has to be supplied to the system from the surroundings.

Surroundings

$$
\text { energy }+2 \mathrm{HgO}(s) \longrightarrow 2 \mathrm{Hg}\left(\eta+\mathrm{O}_{2}(g)\right.
$$

$$
\text { energy }+\mathrm{H}_{2} \mathrm{O}(\mathrm{~s}) \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{n}}
$$

Exothermic

energy of the products < energy of the reactants

Endothermic

energy of the products > energy of the reactants

6.3 Introduction to thermodynamics

Thermochemistry is the study of heat change in chemical reactions. Thermochemistry is part of a broader subject called Thermodynamics.

Thermodynamic = scientific study of the interconversion of heat and other kinds of energy

State of a system = the values of all relevant macroscopic properties-example: energy, temperature, pressure, volume.

State function

- properties that are determined by the state of the system (eg. energy, temp, pressure, volume).
- depends only on the initial and final states of the system, not on the path by which the system arrived at that state.

$$
\begin{array}{ll}
\Delta E=E_{\text {final }}-E_{\text {initial }} \Delta V=V_{\text {final }}-V_{\text {initial }} & \\
\Delta P=P_{\text {final }}-P_{\text {initial }} \Delta T=T_{\text {final }}-T_{\text {initial }} & \Delta w \ngtr w_{\text {tinal }}-w_{\text {initial }} \\
\text { q and w are not state functions } \\
\text { They are not properties of a system } & \Delta q \nVdash q_{\text {final }}-q_{\text {inititial }}
\end{array}
$$

- Energy, E is a function of state-not easily measured.
- $\Delta \mathbf{E}$ has a unique value between two states-easily measured.

$$
\Delta E=E_{\text {final }}-E_{\text {initial }}
$$

- Independent of the path by which the system achieved that state.

Potential energy of hiker 1 and hiker 2 is the same even though they took different paths.
First law of thermodynamics - energy can be converted from one form to another, but cannot be created or destroyed.
Change in internal energy,
$\Delta E=E_{\text {final }}-E_{\text {initial }}$
Internal energy = Total energy
(kinetic + potential) in a system

Transfer of energy from the system to the surroundings does not change the total energy of the universe

$$
\begin{aligned}
& \Delta E_{\text {system }}+\Delta E_{\text {surroundings }}=0 \\
& \Delta E_{\text {system }}=-\Delta E_{\text {surroundings }}
\end{aligned}
$$

Change of energy ($\Delta \mathrm{E}$)

When energy is exchanged between the system and the surroundings, it is exchanged as either heat (q) or work (w).

Energy lost by the system = Energy gained by the surroundings
$\Delta E=$ the change in internal energy of a system
$q=$ the heat exchange between the system and the surroundings $w=$ the work done on (or by) the system

Sign conventions for \& heat

Process

$$
\Delta E=q+w
$$

Work done by the system on the surroundings
Work done on the system by the surroundings
Heat absorbed by the system from the surroundings (endothermic process)
Heat absorbed by the surroundings from the system (exothermic process)

$-\Delta E$ (loss of internal energy) $+\Delta E$ (gain of internal energy)

Work and Heat

$$
w=F \times d \quad \text { unit }=J
$$

Mechanical work done by gas(reaction in vessel fitted with a piston)
$P=$ constant external pressure

$$
w=-P \Delta V
$$

$$
\text { unit }=\mathrm{L} \cdot \mathrm{~atm}
$$

$$
1 \mathrm{~L} . \operatorname{atm}=101.3 \mathrm{~J}
$$

$$
P \times V=\frac{F}{d^{R}} \times d^{B}=F \times d=w
$$

A sample of nitrogen gas expands in volume from 1.6 L to 5.4 L at constant temperature. What is the work done in joules if the gas expands (a) against a vacuum and (b) against a constant pressure of 3.7 atm?

$$
w=-P \Delta V
$$

(a) $\Delta V=5.4 \mathrm{~L}-1.6 \mathrm{~L}=3.8 \mathrm{~L} \quad P=0 \mathrm{~atm}$

$$
W=-0 \mathrm{~atm} \times 3.8 \mathrm{~L}=0 \mathrm{~L} \cdot \mathrm{~atm}=0 \text { joules }
$$

(b) $\quad \Delta V=5.4 \mathrm{~L}-1.6 \mathrm{~L}=3.8 \mathrm{~L} \quad P=3.7 \mathrm{~atm}$

$$
\begin{aligned}
& w=-3.7 \mathrm{~atm} \times 3.8 \mathrm{~L}=-14.1 \mathrm{~L} \cdot \mathrm{~atm} \\
& w=-14.1 \mathrm{~L} \cdot \mathrm{~atm} \times \frac{101.3 \mathrm{~J}}{1 \mathrm{~L} \cdot \mathrm{~atm}}=-1430 \mathrm{~J}
\end{aligned}
$$

$$
(1 \mathrm{~L} \cdot \mathrm{~atm}=101.3 \mathrm{~J})
$$

6.4 Enthalpy

Enthalpy (H) (extensive property) is used to quantify the heat flow into or out of a system in a process that occurs at constant pressure.

Enthalpy = internal energy + product of pressure-volume

$$
\begin{array}{rlrl}
H & =E+P V & \\
\Delta H & =\Delta E+P \Delta V & P \text { constant } \\
\Delta H & =(q+w)-\mathrm{w} & \Delta \mathrm{E}=\mathrm{q}+\mathrm{w} \\
\Delta H & =\mathrm{q} & w & =-P \Delta V
\end{array}
$$

Change of enthalpy of the system = heat flow into/out the system (heat gain/heat lost)

Enthalpy of reaction, $\Delta H=H$ (products) $-H$ (reactants)

Endothermic

Exothermic

$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \quad$ reactants

Surroundings
System

Surroundings

Thermochemical Equations

Is ΔH negative or positive?
System absorbs heat
Endothermic
$\Delta H>0$
6.01 kJ are absorbed for every 1 mole of ice that melts at $0^{\circ} \mathrm{C}$ and 1 atm .

$$
\mathrm{H}_{2} \mathrm{O}(s) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~s} \quad \Delta H=6.01 \mathrm{~kJ} / \mathrm{mol}
$$

Thermochemical Equations

Is ΔH negative or positive?
System gives off heat
Exothermic
$\Delta H<0$
890.4 kJ are released for every 1 mole of methane that is combusted at $25^{\circ} \mathrm{C}$ and 1 atm.
$\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(\lambda \Delta H=-890.4 \mathrm{~kJ} / \mathrm{mol}$

Thermochemical Equations

- The stoichiometric coefficients always refer to the number of moles of a substance

$$
\mathrm{H}_{2} \mathrm{O}(s) \longrightarrow \mathrm{H}_{2} \mathrm{O}
$$

$$
\Delta H=6.01 \mathrm{~kJ} / \mathrm{mol}
$$

- If you reverse a reaction, the sign of ΔH changes
$\mathrm{H}_{2} \mathrm{O}(1) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\subseteq)$
$\Delta H=-6.01 \mathrm{~kJ} / \mathrm{mol}$

Thermochemical Equations

- If you multiply both sides of the equation by a factor n, then ΔH must change by the same factor n.

$$
2 \mathrm{H}_{2} \mathrm{O}(s) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}() \quad \Delta H=2 \times 6.01=12.0 \mathrm{~kJ}
$$

- The physical states of all reactants and products must be specified in thermochemical equations.

$$
\begin{array}{ll}
\mathrm{H}_{2} \mathrm{O}(\$ 1) \longrightarrow \mathrm{H}_{2} \mathrm{O}(1) & \Delta H=6.01 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{H}_{2} \mathrm{O}(1) \longrightarrow \mathrm{H}_{2} \mathrm{O} \text { (gl) } & \Delta H=44.0 \mathrm{~kJ} / \mathrm{mol}
\end{array}
$$

How much heat is evolved when 266 g of white phosphorus $\left(\mathrm{P}_{4}\right)$ burn in air?

$$
\mathrm{P}_{4}(s)+5 \mathrm{O}_{2}(g) \longrightarrow \mathrm{P}_{4} \mathrm{O}_{10}(s) \quad \Delta H=-3013 \mathrm{~kJ} / \mathrm{mol}
$$

$$
266 g P_{4} \times \frac{1 \mathrm{mot}_{4}}{123.9 g F_{4}} \times \frac{3013 \mathrm{~kJ}}{1 \mathrm{mot}_{4}}=6470 \mathrm{~kJ}
$$

6.4 Calorimetry

Calorimetry = measurement of heat change

The specific heat (s) of a substance is the amount of heat (q) required to raise the temperature of one gram of the substance by one degree Celsius. Unit $=\mathrm{J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
The heat capacity (C) of a substance is the amount of heat (q) required to raise the temperature of a given quantity (m) of the substance by one degree Celsius.
$C=m s$
Heat (q) absorbed or released:

$$
\begin{aligned}
& q=C \Delta t \quad \Delta t=t_{\text {tinal }}-t_{\text {initial }} \\
& q=m s \Delta t \\
& q>0=\text { endothermic process } \\
& q<0=\text { exothermic process }
\end{aligned}
$$

Unit $=\mathrm{J} /{ }^{\circ} \mathrm{C}$

Substance	Specific Heat $\left(\mathbf{J} / \mathbf{g} \cdot{ }^{\circ} \mathbf{C}\right)$
Al	0.900
Au	0.129
C (graphite)	0.720
C (diamond)	0.502
Cu	0.385
Fe	0.444
Hg	0.139
$\mathrm{H}_{2} \mathrm{O}$	4.184
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (ethanol)	2.46

Determine the heat capacity for 60.0 g of water.

$$
\begin{aligned}
\mathrm{C} & =\mathrm{ms} \\
& =(60.0 \mathrm{~g})\left(4.184 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right) \\
& =251 \mathrm{~J} /{ }^{\circ} \mathrm{C}
\end{aligned}
$$

A 466 g sample of water is heated from $8.50{ }^{\circ} \mathrm{C}$ to $74.60{ }^{\circ} \mathrm{C}$. Calculate the amount of heat absorbed by the water in kJ.

$$
\begin{gathered}
q=m s \Delta t \\
q=(466 \mathrm{~g})\left(4.184 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right)\left(74.60^{\circ} \mathrm{C}-8.50^{\circ} \mathrm{C}\right) \\
q=128878 \mathrm{~J} \\
q=129 \mathrm{~kJ}
\end{gathered}
$$

How much heat is given off when an 869 g iron bar cools from $94{ }^{\circ} \mathrm{C}$ to $5^{\circ} \mathrm{C}$?
s of $\mathrm{Fe}=0.444 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$

$$
\begin{aligned}
\Delta t & =t_{\text {tinal }}-t_{\text {initial }} \\
& =5^{\circ} \mathrm{C}-94^{\circ} \mathrm{C}=-89^{\circ} \mathrm{C}
\end{aligned}
$$

$$
\begin{aligned}
q & =m s \Delta t \\
& =869 \mathrm{~g} \times 0.444 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C} \times-89^{\circ} \mathrm{C} \\
& =-34,000 \mathrm{~J} \\
& =-34 \mathrm{~kJ}
\end{aligned}
$$

Constant-Volume Calorimetry ("Bomb" calorimeter)

No heat/mass enters/leaves (isolated system)

Constant-Pressure Calorimetry ("coffee-cup" calorimeter)

measure heat of reactions (acid-base neutralization, heat of solution, heat of dilution)

$$
\begin{aligned}
& q_{\mathrm{rxn}}=-\left(q_{\mathrm{water}}+q_{\mathrm{cal}}\right) \\
& q_{\mathrm{water}}=m \mathrm{~s} \Delta t \\
& q_{\mathrm{cal}}=C_{c a l} \Delta t
\end{aligned}
$$

Reaction at Constant P

$$
\Delta H=q_{\mathrm{rxn}}
$$

No heat enters or leaves!

TABLE 6.3 Heats of Some Typical Reactions Measured at Constant Pressure

Type of Reaction	Example	$\boldsymbol{\Delta H}$ (kJ/mol)
Heat of neutralization	$\mathrm{HCl}(a q)+\mathrm{NaOH}(a q) \longrightarrow \mathrm{NaCl}(a q)+\mathrm{H}_{2} \mathrm{O}(l)$	-56.2
Heat of ionization	$\mathrm{H}_{2} \mathrm{O}(l) \longrightarrow \mathrm{H}^{+}(a q)+\mathrm{OH}^{-}(a q)$	56.2
Heat of fusion	$\mathrm{H}_{2} \mathrm{O}(s) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)$	6.01
Heat of vaporization	$\mathrm{H}_{2} \mathrm{O}(l) \longrightarrow \mathrm{H}_{2} \mathrm{O}(g)$	44.0^{*}
Heat of reaction	$\mathrm{MgCl}_{2}(s)+2 \mathrm{Na}(l) \longrightarrow 2 \mathrm{NaCl}(s)+\mathrm{Mg}(s)$	-180.2

*Measured at $25^{\circ} \mathrm{C}$. At $100^{\circ} \mathrm{C}$, the value is 40.79 kJ .

Because no heat enters or leaves the system throughout the process, heat lost by the reaction must be equal to the heat gained by the calorimeter and water, therefore, we can write...

where $\mathrm{q}_{\text {water }}$ is determined by

$$
\mathrm{q}=m \mathrm{~s} \Delta t
$$

and $q_{\text {calorimeter }}$ is determined by

$$
\mathrm{q}=c \Delta t
$$

A reactant was burned in a constant-volume calorimeter. The temperature of the water increased from $20.17^{\circ} \mathrm{C}$ to $25.84{ }^{\circ} \mathrm{C}$. Given the mass of water surrounding the calorimeter is 2000 g and the heat capacity of the calorimeter is $1.80 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$, calculate the heat of combustion. heat lost by the reaction = heat gained by the water and bomb

$$
\begin{aligned}
q_{\text {water }} & =m s \Delta t \quad q=-\left(q_{\text {water }}+q_{\text {cal }}\right) \\
& =(2000 \mathrm{~g})\left(4.184 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}\right)\left(25.84^{\circ} \mathrm{C}-20.17^{\circ} \mathrm{C}\right) \\
& =47400 \mathrm{~J} \text { or } 47.4 \mathrm{~kJ} \\
\mathrm{q}_{\text {bomb }} & =\mathrm{C} \Delta \mathrm{t} \\
& =\left(1.80 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}\right)\left(25.84^{\circ} \mathrm{C}-20.17^{\circ} \mathrm{C}\right) \\
& =10.2 \mathrm{~kJ} \\
q= & -\left(q_{\text {water }}+\mathrm{q}_{\text {cal }}\right) \\
q & =-(47.4 \mathrm{~kJ}+10.2 \mathrm{~kJ})=-57.6 \mathrm{~kJ}
\end{aligned}
$$

6.5 Standard enthalpy of formation and reaction

Absolute enthalpy cannot be determined. H is a state function so changes in enthalpy, $\Delta \mathrm{H}$, have unique values.

Standard enthalpy of formation $\left(\Delta \mathbf{H}_{f}^{0}\right)$ is the heat change for the formation of one mole of a compound from its elements at standard conditions ($1 \mathrm{~atm} \& 25^{\circ} \mathrm{C}$)

The standard enthalpy of formation of any element in its most stable form is zero.

$$
\begin{aligned}
& \Delta H_{f}^{0}\left(\mathrm{O}_{2}\right)=0 \\
& \Delta \mathrm{H}_{\mathrm{f}}^{0}\left(\mathrm{O}_{3}\right)=142 \mathrm{~kJ} / \mathrm{mol} \\
& \Delta \mathrm{H}_{\mathrm{f}}^{0}(\mathrm{C}, \text { graphite })=0 \\
& \Delta \mathrm{H}_{\mathrm{f}}^{0}(\mathrm{C}, \text { diamond })=1.90 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

Substance	$\Delta H_{\mathrm{f}}^{\circ}(\mathrm{kJ} / \mathrm{mol})$	Substance	$\Delta H_{\mathrm{f}}(\mathrm{kJ} / \mathrm{mol})$
$\mathrm{Ag}(s)$	0	$\mathrm{H}_{2} \mathrm{O}_{2}(l)$	-187.6
$\mathrm{AgCl}(\mathrm{s})$	-127.0	$\mathrm{Hg}(l)$	0
$\mathrm{Al}(\mathrm{s})$	0	$\mathrm{I}_{2}(s)$	0
$\mathrm{Al}_{2} \mathrm{O}_{3}(s)$	-1669.8	$\mathrm{HI}(\mathrm{g})$	25.9
$\mathrm{Br}_{2}(l)$	0	$\mathrm{Mg}(\mathrm{s})$	0
$\mathrm{HBr}(\mathrm{g})$	-36.2	$\mathrm{MgO}(\mathrm{s})$	-601.8
C(graphite)	0	$\mathrm{MgCO}_{3}(s)$	-1112.9
C(diamond)	1.90	$\mathrm{N}_{2}(\mathrm{~g})$	0
$\mathrm{CO}(\mathrm{g})$	-110.5	$\mathrm{NH}_{3}(\mathrm{~g})$	-46.3
$\mathrm{CO}_{2}(\mathrm{~g})$	-393.5	$\mathrm{NO}(\mathrm{g})$	90.4
$\mathrm{Ca}(\mathrm{s})$	0	$\mathrm{NO}_{2}(\mathrm{~g})$	33.85
$\mathrm{CaO}(s)$	-635.6	$\mathrm{N}_{2} \mathrm{O}(\mathrm{g})$	81.56
$\mathrm{CaCO}_{3}(s)$	-1206.9	$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$	9.66
$\mathrm{Cl}_{2}(\mathrm{~g})$	0	$\mathrm{O}(\mathrm{g})$	249.4
$\mathrm{HCl}(\mathrm{g})$	-92.3	$\mathrm{O}_{2}(\mathrm{~g})$	0
$\mathrm{Cu}(\mathrm{s})$	0	$\mathrm{O}_{3}(\mathrm{~g})$	142.2
$\mathrm{CuO}(s)$	-155.2	S(rhombic)	0
$\mathrm{F}_{2}(\mathrm{~g})$	0	S (monoclinic)	0.30
$\mathrm{HF}(\mathrm{g})$	-271.6	$\mathrm{SO}_{2}(\mathrm{~g})$	-296.1
$\mathrm{H}(\mathrm{g})$	218.2	$\mathrm{SO}_{3}(\mathrm{~g})$	-395.2
$\mathrm{H}_{2}(\mathrm{~g})$	0	$\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$	-20.15
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	-241.8	$\mathrm{Zn}(\mathrm{s})$	0
$\mathrm{H}_{2} \mathrm{O}(l)$	-285.8	$\mathrm{ZnO}(s)$	-348.0

The standard enthalpy of reaction $\left(\Delta \mathrm{H}_{\mathrm{rx}}^{0}\right)$ is the enthalpy of a reaction carried out at 1 atm .

$$
\begin{gathered}
a \mathrm{~A}+b \mathrm{~B} \longrightarrow c \mathrm{C}+d \mathrm{D} \\
\Delta \mathrm{H}_{\mathrm{rxn}}^{0}=\left[c \Delta \mathrm{H}_{\mathrm{f}}^{0}(\mathrm{C})+d \Delta \mathrm{H}_{\mathrm{f}}^{0}(\mathrm{D})\right]-\left[a \Delta \mathrm{H}_{\mathrm{f}}^{0}(\mathrm{~A})+b \Delta \mathrm{H}_{\mathrm{f}}^{0}(\mathrm{~B})\right]
\end{gathered}
$$

$\Delta H_{r x n}^{0}=\Sigma n \Delta H_{f}^{0}$ (products) $-\Sigma m \Delta H_{f}^{0}$ (reactants)
ΔH^{0} can be determined using the direct method or the indirect method.

The Direct Method for Determining ΔH^{0}

- Calculation of the enthalpy of formation of solid calcium oxide.
$\mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CaCO}_{3}(\mathrm{~s}) \quad \Delta \mathrm{H}_{r \times n}^{\circ}=-177.8 \mathrm{~kJ} / \mathrm{mol}$

$$
\Delta H_{r \times n}{ }_{r \times s}=\Sigma n \Delta H^{0}{ }_{f}(\text { products })-\Sigma n \Delta H^{0}{ }_{f}(\text { reactants })
$$

$-177.8 \mathrm{~kJ} / \mathrm{mol}=1 \mathrm{~mol}(-1206.9)-[1 \mathrm{~mol}(x)+1 \mathrm{~mol}(-393.5)]$

$$
\Delta H_{f}{ }^{\circ} \text { for } \mathrm{CaO}(\mathrm{~s})=-635.6 \mathrm{~kJ}
$$

The Indirect Method for Determining $\Delta \mathrm{H}^{0}$

 Based on the law of heat summation (Hess's law).Hess's Law: When reactants are converted to products, the change in enthalpy is the same whether the reaction takes place in one step or in a series of steps.

Enthalpy is a state function. It doesn't matter how you get there, only where you start and end (initial and final state)

Hess's Law

the ΔH for the overall process is the sum of the ΔH for the individual steps.

C (graphite) $+1 / 2 \mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}(g)$ $\xrightarrow[\mathrm{C} \text { (graphite) }+\mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g)]{\mathrm{CO}(g)+1 / 2 \mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g)}$

Indirect method (Hess's Law)

$$
\mathrm{S}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{2}(\mathrm{~g}) ; \Delta \mathrm{H}^{0}=-297 \mathrm{~kJ}
$$

$2 \mathrm{SO}_{3}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) ; \Delta \mathrm{H}^{0}=198 \mathrm{~kJ}$
$2 \mathrm{~S}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g}) ; \Delta \mathrm{H}^{0}=?$

Answer:

$2 \mathrm{~S}(\mathrm{~s})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{~S},(\mathrm{~g}) ; \Delta \mathrm{H}^{0}=(-297 \mathrm{~kJ}) \times(2)$
$25 \underbrace{(g)}+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g}) ; \Delta \mathrm{H}^{0}=(198 \mathrm{~kJ}) \times(-1)$

$$
2 \mathrm{~S}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g}) ; \Delta \mathrm{H}^{0}=-792 \mathrm{~kJ}
$$

$$
\begin{aligned}
& \mathrm{NO}(\mathrm{~g}) \rightarrow 1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \Delta \mathrm{H}=-90.25 \mathrm{~kJ} \\
& \mathrm{NO}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=-57.07 \mathrm{~kJ} \\
& 1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=? ?
\end{aligned}
$$

$1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}(\mathrm{g}) \quad \Delta \mathrm{H}=+90.25 \mathrm{~kJ}$ $\mathrm{NO}(\mathrm{g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=-57.07 \mathrm{~kJ}$

$$
1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=+33.18 \mathrm{~kJ} \text { 咅 }
$$

$$
\begin{array}{r}
\mathrm{NO}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \\
\Delta H^{\circ}=-57.07 \mathrm{~kJ} \\
\Delta H^{\circ}=+90.25 \mathrm{~kJ} \\
\mathrm{NO}_{2}(\mathrm{~g})
\end{array}
$$

$$
\Delta H^{\circ}=+33.18 \mathrm{~kJ}
$$

$$
\frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

Benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ burns in air to produce carbon dioxide and liquid water. How much heat is released per mole of benzene combusted? The standard enthalpy of formation of benzene is $49.04 \mathrm{~kJ} / \mathrm{mol}$.

$$
\begin{gathered}
2 \mathrm{C}_{6} \mathrm{H}_{6}(n)+15 \mathrm{O}_{2}(g) \longrightarrow 12 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~s}) \\
\Delta \mathrm{H}_{\mathrm{rxn}}^{0}=\Sigma n \Delta \mathrm{H}_{\mathrm{f}}^{0} \text { (products) }-\Sigma m \Delta \mathrm{H}_{\mathrm{f}}^{0}(\text { reactants }) \\
\Delta \mathrm{H}_{\mathrm{rxn}}^{0}=\left[12 \Delta \mathrm{H}_{\mathrm{f}}^{0}\left(\mathrm{CO}_{2}\right)+6 \Delta \mathrm{H}_{\mathrm{f}}^{0}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]-\left[2 \Delta \mathrm{H}_{\mathrm{f}}^{0}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)\right] \\
\Delta \mathrm{H}_{\mathrm{rxn}}^{0}=[12 \mathrm{x}-393.5+6 \mathrm{x}-187.6]-[2 \times 49.04]=-5946 \mathrm{~kJ} \\
\frac{-5946 \mathrm{~kJ}}{2 \mathrm{~mol}}=-2973 \mathrm{~kJ} / \mathrm{mol} \mathrm{C}_{6} \mathrm{H}_{6}
\end{gathered}
$$

6.6 Heat of solution and dilution

The enthalpy/heat of solution $\left(\Delta H_{\text {soln }}\right)$ is the heat generated or absorbed when a certain amount of solute dissolves in a certain amount of solvent.

$$
\Delta H_{\text {soln }}=H_{\text {soln }}-H_{\text {components }}
$$

The heat of dilution is the heat change associated with the dilution process.

Heats of Solution of
 Some lonic Compounds

$\Delta H_{\text {soln }}$
Compound
LiCl
CaCl_{2}
NaCl4.0
$\mathrm{KCl} \quad 17.2$
$\mathrm{NH}_{4} \mathrm{Cl}$
$\mathrm{NH}_{4} \mathrm{NO}_{3}$
15.2
26.2

Lattice energy (U)
= the energy required to completely separate one mole of a solid ionic compound into gaseous ions

Heat of hydration $\left(\Delta H_{\text {hydr }}\right)$
= the enthalpy change associated with the hydration process

Lattice energy (U)

$1 \mathrm{~mol} \mathrm{NaCl}_{(\mathrm{s})} \longrightarrow 1 \mathrm{~mol} \mathrm{Na}_{(\mathrm{g})}^{+1}+1 \mathrm{~mol} \mathrm{Cl}_{(\mathrm{g})}^{1}$ $\Delta H=787 \mathrm{~kJ} / \mathrm{mol}$

Dissolution of

$+$

Hydrated Na^{+}and Cl^{-}ions

Choptan 7

Qunntum Theory and the

Electronic structure of Atoms

7.1 FROM CLASSICAL PHYSICS TO QUANTUM THEORY 7.2 THE PHOTOELECTRIC EFFECT
7.3 BOHR'S THEORY OF THE HYDROGEN ATOM 7.4 THE DUAL NATURE OF THE ELECTRON 7.5 QUANTUM MECHANICS 7.6 QUANTUM NUMBERS 7.7 ATOMIC ORBITALS 7.8 ELECTRON CONFIGURATION 7.9 THE BUILDING-UP PRINCIPLE
7.1 FROM CLASSICAL PHYSICS TO QUANTUM THEORY 7.2 THE PHOTOELECTRIC EFFECT
7.3 BOHR'S THEORY OF THE HYDROGEN ATOM 7.4 THE DUAL NATURE OF THE ELECTRON
7.5 QUANTUM NUMBERS
7.6 ELECTRON CONFIGURATION
7.9 THE BUILDING-UP PRINCIPLE

Properties of Waves

Wave is the vibrating disturbance by which energy is transmitted. Wavelength (λ) is the distance between identical points on successive waves. Unit= $\mathrm{m} / \mathrm{cm} / \mathrm{nm}$.
Amplitude is the vertical distance from the midline of a wave to the peak or trough.
Frequency (v) is the number of waves that pass through a particular point in 1 s . Unit= Hz . ($1 \mathrm{~Hz}=1 \mathrm{cycle} / \mathrm{s}$).

Speed of the wave $(L)=\lambda \nu$

Maxwell's Electromagnetic Radiation Theory

Light consists of electromagnetic waves (electric +magnetic)
Electromagnetic radiation is the emission and transmission of energy in the form of electromagnetic waves.
Speed of light $(c)=\lambda \nu$

$$
=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

Types of electromagnetic radiation

A photon has a frequency of $6.0 \times 10^{4} \mathrm{~Hz}$. Convert this frequency into wavelength (nm).

$$
\begin{aligned}
\lambda v & =c \\
\lambda & =c / v \\
\lambda & =3.00 \times 10^{8} \mathrm{~m} / \mathrm{s} / 6.0 \times 10^{4} \mathrm{~Hz} \\
\lambda & =3.00 \times 10^{8} \mathrm{~m} / \mathrm{s} / 6.0 \times 10^{4} / \mathrm{s} \\
\lambda & =5.0 \times 10^{3} \mathrm{~m} \\
\lambda & =5.0 \times 10^{12} \mathrm{~nm}
\end{aligned}
$$

Planck's Quantum Theory

- When solids are heated, they emit electromagnetic radiation over a wide range of wavelengths.
-Atoms emit/absorb energy only in discrete units (quantum)
Quantum = the smallest quantity of energy that can be emitted/absorbed in the form of electromagnetic radiation.

Quantum energy, $E=h v \quad \mathrm{~h}=$ Planck's constant

$$
\begin{aligned}
& =6.63 \times 10^{-34} \mathrm{Js} \\
\mathrm{v} & =\text { frequency }
\end{aligned}
$$

7.2 THE PHOTOELECTRIC EFFECT

Einstein's light theory

Photoelectric Effect = electrons are ejected from the surface of certain metals exposed to light of at least a minimum frequency(threshold frequency).

Photon = particle of light

Photon energy, E = $h v$

Energy a frequency
Light has both wave and particle-like properties

When sodium is bombarded with highenergy electrons, X rays are emitted. Calculate the energy (in joules) associated with the photons if the wavelength of the X rays is 0.154 nm .

$$
\begin{aligned}
& E=h \nu \\
& E=h \times c / \lambda \\
& E=6.63 \times 10^{-34}(\mathrm{~J} . \mathrm{s}) \times 3.00 \times 10^{8}\left(\text { (hi/s) } / 0.154 \times 10^{-9}(\text { (pr })\right. \\
& E=1.29 \times 10^{-15} \mathrm{~J}
\end{aligned}
$$

LIGHT IS A

7.3 BOHR'S THEORY OF THE HYDROGEN ATOM

\ominus
$+$

Emission spectra

-Continuous/line spectra of radiation emitted by substances
-Every element has a unique emission spectrum.
continuous spectra $=$ light emission at all wavelengths, eg sun, heated solid

line spectra $=$ light emission only at specific wavelengths, eg H atom

Bohr's Theory of Atom

-explained the line spectrum of H -postulated a "solar system" model
(e- travel in circular orbits around the nucleus) 1. e^{-}have specific (quantized) energy level
2. light is emitted as e^{-}moves from higher energy orbit to a lower-energy orbit

$$
E_{n}=-R_{\mathrm{H}}\left(\frac{1}{n^{2}}\right)
$$

$R_{H}=$ Rydberg constant

$$
=2.18 \times 10^{-18} \mathrm{~J}
$$

$$
\begin{aligned}
n & =\text { principal quantum number } \\
& =1,2,3, \ldots
\end{aligned}
$$

Ground level = lowest energy level($\mathrm{n}=1$) Excited level = higher energy level than ground level ($\mathrm{n}=2,3, \ldots$)

$E=h \nu$
$E_{\text {photon }}=\Delta E=E_{\mathrm{f}}-E_{\mathrm{i}}$
$E_{f}=-R_{H}\left(\frac{1}{n_{f}^{2}}\right)$
$E_{i}=-R_{\mathrm{H}}\left(\frac{1}{n_{i}^{2}}\right)$
$\Delta E=R_{\mathrm{H}}\left(\frac{1}{n_{i}^{2}}-\frac{1}{n_{t}^{2}}\right)$
$\Delta E=h v=R_{\mathrm{H}}\left(\frac{1}{n_{i}^{2}}-\frac{1}{n_{t}^{2}}\right)$
$\mathrm{n}_{\mathrm{i}}>\mathrm{n}_{\mathrm{f}}$
ΔE-ve
Energy lost (photon emitted)

Calculate the wavelength (in nm) of a photon emitted by a hydrogen atom when its electron drops from the $n=5$ state to the $n=3$ state.

$$
\begin{aligned}
E_{\text {photon }} & =\Delta E=R_{\mathrm{H}}\left(\frac{1}{n_{i}^{2}}-\frac{1}{n_{f}^{2}}\right) \\
E_{\text {photon }} & =2.18 \times 10^{-18} \mathrm{~J} \times(1 / 25-1 / 9) \\
E_{\text {photon }} & =\Delta E=-1.55 \times 10^{-19} \mathrm{~J} \\
E_{\text {photon }} & =h \times c / \lambda \\
\lambda & =h \times c / E_{\text {photon }} \\
\lambda & =6.63 \times 10^{-34}(.5 \cdot s) \times 3.00 \times 10^{8}(\mathrm{~m} / \mathrm{s}) / 1.55 \times 10^{-19}, \delta \\
\lambda & =1280 \mathrm{~nm}
\end{aligned}
$$

7.4 THE DUAL NATURE OF THE ELECTRON

De Broglie Relation

De Broglie postulated that e^{-}is both particle and wave.

$$
\lambda=\frac{h}{m u}
$$

$u=$ velocity of e -
$m=$ mass of $\mathrm{e}-$
h in J.s

m in kg
ω in (m / s)

What is the de Broglie wavelength (in nm) associated with a 2.5 g Ping-Pong ball traveling at $15.6 \mathrm{~m} / \mathrm{s}$?

$$
\begin{aligned}
& \lambda=h / m u \\
& \lambda=6.63 \times 10^{-34} /\left(2.5 \times 10^{-3} \times 15.6\right) \\
& \lambda=1.7 \times 10^{-32} \mathrm{~m} \\
& \lambda=1.7 \times 10^{-23} \mathrm{~nm}
\end{aligned}
$$

7.5 QUANTUM NUMBERS

Quantum numbers

Quantum numbers are a set of values that describes the state of an electron including its distance from the nucleus, the orientation and type of orbital where it is likely to be found, and its spin.
1)Principal quantum number (n)
2)Angular momentum quantum number (l)
3)Magnetic quantum number $\left(m_{1}\right)_{2 \text { sathat }}$ 4)Spin quantum number $\left(\mathrm{m}_{\mathrm{s}}\right)$

Principal quantum number (n)

- Energy of an orbital
- distance of e^{-}from the nucleus
- $n=1,2,3,4, \ldots$
- $\mathrm{n} \uparrow$ - orbital energy \uparrow
- distance of e- (in orbital) from nucleus \uparrow
- orbital size \uparrow
- orbital stability \downarrow

$$
2 s
$$

Angular momentum quantum number (I)

- Shape of an orbital
- Possible values $=0$ to ($\mathrm{n}-1$)
possible values $=0 \begin{array}{lllllll}0 & 1 & 2 & 4 & \text { 5............ } n-1\end{array}$
letter designation $=s p d f g$ h............
values of n
values of ℓ
orbitals
1
2
3

0	$1 s$
0,1	$2 s, 2 p$
$0,1,2$	$3 s, 3 p, 3 d$

shells
$\rightarrow \quad$ subshells
$\rightarrow \quad$ orbitals

/= 0 (s orbitals)

/= 1 (p orbitals)

$2 p_{x}$

$2 p_{y}$

$2 p_{z}$

/= 2 (d orbitals $)$

Magnetic quantum number $\left(m_{l}\right)$

- Orientation of an orbital
- Possible values = -l, $\ldots . ., 0, \ldots \ldots .,+1$
- Possible values = $(2 l+1)$
- Number of orbitals within a subshell with a particular I
within subshell $\ell=2$, there are 5 orbitals corresponding to the 5 possible values of $\boldsymbol{m}_{\ell}(-2,-1,0,+1,+2)$ d orbitals come in sets of $5 \quad(-2,-1,0,+1,+2)$
p orbitals in sets of 3
$(-1,0,+1)$
s orbitals in sets of 1

$$
\begin{array}{ll}
\mathrm{n}=2 & 3 \text { orientations is space } \\
\mathrm{l}=1 &
\end{array}
$$

$$
m_{1}=-1,0, \text { or } 1
$$

$2 p_{x}$

$2 p_{y}$

$2 p_{z}$

$$
\begin{aligned}
& \mathrm{n}=3 \\
& \mathrm{l}=2
\end{aligned} \quad m_{l}=-2,-1,0,1, \text { or } 2 \quad 5 \text { orientations is space }
$$

Electron spin quantum number $\left(\mathrm{m}_{\mathrm{s}}\right)$

- Spinning motion of e-
- Possible values $=+1 / 2$ or $-1 / 2$

$$
\begin{aligned}
& \text { (0) } \\
& \text { 圆 } \\
& \text { 回 } \\
& \text { II } \\
& \text { T } \\
& \text { A } \\
& \text { ■ } \\
& \text { S }
\end{aligned}
$$

Atomic orbital

Energy of Orbitals in a single e- atom

Eg. orbitals energy levels in H atom

$$
\begin{aligned}
& 4 s-4 p---4 d-----4 f------- \\
& 3 s-3 p---3 d----- \\
& 2 s-2 p---\quad \longleftarrow \mathrm{n}=3
\end{aligned}
$$

Ground state
(most stable condition)
\rightarrow Energy only depends on principal quantum number n

Energy of orbitals in a multi-electron atom (atom containing two Eg. orbitals energy levels in many-electron atom or more e-)

\rightarrow depend on \mathbf{n} \& I
-e- will fill orbitals by the sum of n and $/$.
-Orbitals with equal values of $(n+\lceil)$ will fill with the lower n values first.

Order of orbitals (filling) in multi-electron atom

 $1 \mathrm{~s}<2 \mathrm{~s}<2 \mathrm{p}<3 \mathrm{~s}<3 \mathrm{p}<4 \mathrm{~s}<3 \mathrm{~d}<4 \mathrm{p}<5 \mathrm{~s}<4 \mathrm{~d}<5 \mathrm{p}<6 \mathrm{~s}$

7.8 ELECTRON CONFIGURATION

Electron configuration of an atom = how the e- are distributed among various atomic orbitals in an atom

$$
\begin{array}{ll}
4 s-4 p---4 d-----4 f------- \\
3 s-3 p---3 d----- \\
2 s-2 p---\quad \text { Orbital diagram }
\end{array}
$$

$\mathrm{H} \quad \uparrow$ number of e - in the orbital or subshell
principal quantum
1s - number \boldsymbol{n}
angular momentum quantum number /

Quantum numbers: $\left(n, l, m_{p}, m_{s}\right)$
Each electron's quantum numbers are unique and cannot be shared by another electron in that atom.

Pauli exclusion principle - no two electrons in an atom can have identical values of all 4 quantum numbers
s orbitals have 1 possible value of m_{1} to hold 2 electrons p orbitals have 3 possible value of m_{1} to hold 6 electrons d orbitals have 5 possible value of m_{1} to hold 10 electrons f orbitals have 7 possible value of m_{1} to hold 14 electrons
$\rightarrow \therefore$ maximum of 2 electrons per orbital atomic number $(Z)=\#$ protons = \# electrons (in neutral atom)

Paramagnetism and Diamagnetism

- atoms with 1 or more unpaired electrons are paramagnetic, (attracted by a magnetic)
- atoms with all spins paired are diamagnetic (repelled by magnet)

$$
\begin{array}{llll}
\mathrm{He} & \uparrow \downarrow & & \rightarrow \text { diamagnetic } \\
& 1 s^{2} & & \\
\mathrm{Li} & \uparrow \downarrow & \uparrow & \rightarrow \text { paramagnetic } \\
& 1 s^{2} & 2 s^{1} &
\end{array}
$$

Hund's Rule

- the most stable arrangement of electrons in subshells is the one with the greatest number of parallel spins.
e- configuration of $C(Z=6)$

$1 s^{2} \quad 2 s^{2} \quad 2 p_{x} 2 p_{y} 2 p_{z}$

How many electrons can a $3^{\text {rd }}$ shell $(n=3)$ have ?
the 3rd shell $(n=3)$ can hold a maximum of 18 electrons:

$$
\begin{array}{llll}
n=3 & \ell= & 0 & 1 \\
\text { subshell } & 3 s & 3 p & 3 d \\
& \text { \# orbitals } & 1 & 3 \\
& \text { \# electrons } & 2 & 6 \\
& 10=18 \text { total }
\end{array}
$$

Or use formula $2 n^{2}$

How many $2 p$ orbitals are there in an atom?
$n=2$
\vdots
$2 p$
\uparrow
$l=1$

If $/=1$, then $m_{l}=-1,0$, or +1

How many electrons can be placed in the $3 d$ subshell?

Determine the electron configuration of silicon

Silicon has 14 protons and 14 electrons
$\frac{\uparrow \downarrow}{1 \mathrm{~s}} \frac{\uparrow \downarrow}{2 \mathrm{~s}} \frac{\uparrow \downarrow}{2 \mathrm{p}} \frac{\uparrow \downarrow}{} \frac{\uparrow \downarrow}{3 \mathrm{~s}}-\frac{\uparrow \downarrow}{3 \mathrm{p}}-$
The electron configuration of silicon is $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{2}$

7.9 THE BUILDING-UP PRINCIPLE

The Aufbau principle (building-up)

- e- are added progressively to the atomic orbitals to build up the element
- e- configuration of element are normally represented by a noble gas core

$$
\begin{aligned}
& {[\mathrm{Ne}]=1 s^{2} 2 s^{2} 2 p^{6}} \\
& {[\mathrm{Ar}]=1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\text { e- configuration of } \mathrm{Na}}{\rightarrow 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{1}} \\
& \quad \text { or } \\
& \rightarrow[\mathrm{Ne}] 3 \mathrm{~s}^{1}
\end{aligned}
$$

- The aufbau principle works for nearly every element tested.
- There are exceptions to this principle, eg chromium and copper
$\mathrm{Cr}(\mathrm{Z}=24)$, the e-configuration is [Ar] 4s ${ }^{1} 3 \mathrm{~d}^{5}$ instead of $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{4}$ $\mathrm{Cu}(\mathrm{Z}=29)$, the e - configuration is $[\mathrm{Ar}] 4 \mathrm{~s}^{1} 3 \mathrm{~d}^{10}$ instead of $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{9}$

Because of greater stability associated with half-filled $\left(3 \mathrm{~d}^{5}\right)$ and completely filled $\left(3 \mathrm{~d}^{10}\right)$ subshells

What is the electron configuration of Mg ?

$$
\begin{aligned}
& \text { Mg } 12 \text { electrons } \\
& 1 s<2 s<2 p<3 s<3 p<4 s \\
& 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} \quad 2+2+6+2=12 \text { electrons } \\
& \text { Abbreviated as }[\mathrm{Ne}] 3 s^{2} \quad[\mathrm{Ne}]=1 s^{2} 2 s^{2} 2 p^{6}
\end{aligned}
$$

What are the possible quantum numbers for the last (outermost) electron in Cl ?

Cl 17 electrons $1 \mathrm{~s}<2 \mathrm{~s}<2 \mathrm{p}<3 \mathrm{~s}<3 \mathrm{p}<4 \mathrm{~s}$
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5} \quad 2+2+6+2+5=17$ electrons
Last electron added to 3p orbital

$$
n=3 \quad l=1 \quad m_{/}=-1,0, \text { or }+1 \quad m_{s}=1 / 2 \text { or }-1 / 2
$$

TABLE 7.3 The Ground-State Electron Configurations of the Elements*

ATOMIC NUMBER	SYMBOL	ELECTRON CONFIGURATION	ATOMIC NUMBER	SYMBOL	ELECTRON CONFIGURATION	ATOMIC NUMBER	SYMBOL	ELECTRON CONFIGURATION
1	H	$1 s^{1}$	37	Rb	$[\mathrm{Kr}] 5{ }^{1}$	73	Ta	$[\mathrm{Xe}] 6 s^{2} 4 f^{14} 5 d^{3}$
2	He	$1 s^{2}$	38	Sr	$[\mathrm{Kr}] 5 s^{2}$	74	W	[Xe] $6 s^{2} 4 f^{14} 5 d^{4}$
3	Li	[He$] 2 s^{1}$	39	Y	$[\mathrm{Kr}] 5 s^{2} 4 d^{1}$	75	Re	[Xe] $6 s^{2} 4 f^{14} 5 d^{5}$
4	Be	$[\mathrm{He}] 2 s^{2}$	40	Zr	$[\mathrm{Kr}] 5 s^{2} 4 d^{2}$	76	Os	[Xe] $6 s^{2} 4 f^{14} 5 d^{6}$
5	B	[He$] 2 s^{2} 2 p^{1}$	41	Nb	$[\mathrm{Kr}] 5 s^{1} 4 d^{4}$	77	Ir	$[\mathrm{Xe}] 6 s^{2} 4 f^{14} 5 d^{7}$
6	C	[He] $2 s^{2} 2 p^{2}$	42	Mo	$[\mathrm{Kr}] 5 s^{1} 4 d^{5}$	78	Pt	[Xe]6s ${ }^{1} 4 f^{14} 5 d^{9}$
7	N	[He$] 2 s^{2} 2 p^{3}$	43	Tc	$[\mathrm{Kr}] 5 s^{2} 4 d^{5}$	79	Au	[Xe] $6 s^{1} 4 f^{14} 5 d^{10}$
8	O	$[\mathrm{He}] 2 s^{2} 2 p^{4}$	44	Ru	$[\mathrm{Kr}] 5 s^{1} 4 d^{7}$	80	Hg	[Xe] $6 s^{2} 4 f^{14} 5 d^{10}$
9	F	$[\mathrm{He}] 2 s^{2} 2 p^{5}$	45	Rh	$[\mathrm{Kr}] 5 s^{1} 4 d^{8}$	81	Tl	$[\mathrm{Xe}] 6 s^{2} 4 f^{14} 5 d^{10} 6 p^{1}$
10	Ne	$[\mathrm{He}] 2 s^{2} 2 p^{6}$	46	Pd	$[\mathrm{Kr}] 4 d^{10}$	82	Pb	[Xe] $6 s^{2} 4 f^{14} 5 d^{10} 6 p^{2}$
11	Na	[Ne$] 3 s^{1}$	47	Ag	$[\mathrm{Kr}] 5 s^{1} 4 d^{10}$	83	Bi	$[\mathrm{Xe}] 6 s^{2} 4 f^{14} 5 d^{10} 6 p^{3}$
12	Mg	[Ne] $3 s^{2}$	48	Cd	$[\mathrm{Kr}] 5 s^{2} 4 d^{10}$	84	P_{0}	$[\mathrm{Xe}] 6 s^{2} 4 f^{14} 5 d^{10} 6 p^{4}$
13	Al	[Ne$] 3 s^{2} 3 p^{1}$	49	In	$[\mathrm{Kr}] 5 s^{2} 4 d^{10} 5 p^{1}$	85	At	$[\mathrm{Xe}] 6 s^{2} 4 f^{14} 5 d^{10} 6 p^{5}$
14	Si	[Ne$] 3 s^{2} 3 p^{2}$	50	Sn	[Kr$] 5 s^{2} 4 d^{10} 5 p^{2}$	86	Rn	$[\mathrm{Xe}] 6 s^{2} 4 f^{14} 5 d^{10} 6 p^{6}$
15	P	[Ne$] 3 s^{2} 3 p^{3}$	51	Sb	$[\mathrm{Kr}] 5 s^{2} 4 d^{10} 5 p^{3}$	87	Fr	[Rn]75 ${ }^{1}$
16	S	[Ne$] 3 s^{2} 3 p^{4}$	52	Te	$[\mathrm{Kr}] 5 s^{2} 4 d^{10} 5 p^{4}$	88	Ra	[Rn] 75^{2}
17	Cl	[Ne$] 3 s^{2} 3 p^{5}$	53	I	[Kr] $5 s^{2} 4 d^{10} 5 p^{5}$	89	Ac	[Rn] $7 s^{2} 6 d^{1}$
18	Ar	[Ne] $3 s^{2} 3 p^{6}$	54	Xe	[Kr$] 5 s^{2} 4 d^{10} 5 p^{6}$	90	Th	[Rn]7s ${ }^{2} 6 d^{2}$
19	K	[Ar]4s ${ }^{1}$	55	Cs	[Xe]6s ${ }^{1}$	91	Pa	[Rn]7s ${ }^{2} 5 f^{2} 6 d^{1}$
20	Ca	[Ar] $4 s^{2}$	56	Ba	[Xe] $6 s^{2}$	92	U	[Rn] $5^{2} 5 f^{3} 6 d^{1}$
21	Sc	[Ar] $4 s^{2} 3 d^{1}$	57	La	[Xe] $6 s^{2} 5 d^{1}$	93	Np	[Rn] ${ }^{2} 25 f^{4} 6 d^{1}$
22	Ti	[Ar] $4 s^{2} 3 d^{2}$	58	Ce	[Xe] $6 s^{2} 4 f^{1} 5 d^{1}$	94	Pu	[Rn] $7 s^{2} 5 f^{6}$
23	V	[Ar] $4 s^{2} 3 d^{3}$	59	Pr	$[\mathrm{Xe}] 6 \mathrm{~s}^{2} 4 f^{3}$	95	Am	$[\mathrm{Rn}] 7 s^{2} 5 \mathrm{f}^{7}$
24	Cr	[Ar] $4 s^{1} 3 d^{5}$	60	Nd	$[\mathrm{Xe}] 6 s^{2} 4 f^{4}$	96	Cm	$[\mathrm{Rn}] 7 s^{2} 5 f^{7} 6 d^{1}$
25	Mn	[Ar] $4 s^{2} 3 d^{5}$	61	Pm	$[\mathrm{Xe}] 6 s^{2} 4 f^{5}$	97	Bk	$[\mathrm{Rn}] 7 \mathrm{~s}^{2} 5 \mathrm{f}^{9}$
26	Fe	[Ar] $4 s^{2} 3 d^{6}$	62	Sm	$[\mathrm{Xe}] 6 s^{2} 4 f^{6}$	98	Cf	$[\mathrm{Rn}] 7 s^{2} 5 f^{10}$
27	Co	[Ar] $4 s^{2} 3 d^{7}$	63	Eu	$[\mathrm{Xe}] 6 s^{2} 4 f^{7}$	99	Es	[Rn] $7 s^{2} 5 f^{11}$
28	Ni	$[\mathrm{Ar}] 4 s^{2} 3 d^{8} \longrightarrow$	64	Gd	[Xe] $6 s^{2} 4 f^{7} 5 d^{1}$	100	Fm	[Rn] $7 s^{2} 5 f^{12}$
29	Cu	[Ar] $5^{1} 3 d^{10}$	65	Tb	$[\mathrm{Xe}] 6 s^{2} 4 f^{9}$	101	Md	[Rn]7s $25 f^{13}$
30	Zn	[Ar] $5^{2} 3 d^{10}$	66	Dy	[Xe] $6 s^{2} 4 f^{10}$	102	No	$[\mathrm{Rn}] 75^{2} 5 f^{14}$
31	Ga	[Ar$] 4 s^{2} 3 d^{10} 4 p^{1}$	67	Ho	[Xe] $6 s^{2} 4 f^{11}$	103	Lr	[Rn]7s ${ }^{2} 5 f^{14} 6 d^{1}$
32	Ge	[Ar] $4 s^{2} 3 d^{10} 4 p^{2}$	68	Er	[Xe] $6 s^{2} 4 f^{12}$	104	Rf	$[\mathrm{Rn}] 7 s^{2} 5 f^{14} 6 d^{2}$
33	As	[Ar] $4 s^{2} 3 d^{10} 4 p^{3}$	69	Tm	[Xe] $6 s^{2} 4 f^{13}$	105	Ha	$[\mathrm{Rn}] 7 s^{2} 5 \mathrm{f}^{14} 6 d^{3}$
34	Se	[Ar$] 4 s^{2} 3 d^{10} 4 p^{4}$	70	Yb	[Xe] $6 s^{2} 4 f^{14}$	106	Sg	[Rn] $7 s^{2} 5 f^{14} 6 d^{4}$
35	Br	[Ar] $4 s^{2} 3 d^{10} 4 p^{5}$	71	Lu	[Xe] $6 s^{2} 4 f^{14} 5 d^{1}$	107	Ns	$[\mathrm{Rn}] 7 s^{2} 5 f^{14} 6 d^{5}$
36	Kr	$[\mathrm{Ar}] 4 s^{2} 3 d^{10} 4 p^{6}$	72	Hf	[Xe] $6 s^{2} 4 f^{14} 5 d^{2}$	108 109	Hs Mt	$\begin{aligned} & {[\mathrm{Rn}] 7 s^{2} 5 f^{14} 6 d^{6}} \\ & {[\mathrm{Rn}] 7 s^{2} 5 f^{14} 6 d^{7}} \end{aligned}$

Outermost subshell being filled with e-

Periodic Table of the Elements

-alkali metals and alkaline earth metals fill the s orbitals last

- main group elements fill the p orbitals last
- transition metals fill the d orbitals last
- lanthanides (4f) and actinides (5f) fill the forbitals last

Chapter 8
 Chemical Bonding I: Basic Concepts

- 9.1 Lewis dot symbols
- 9.2 the ionic bond
- 9.4 the covalent bond
- 9.5 Electronegativity
- 9.6 Writing Lewis structures
- 9.7 formal charge and Lewis structures
- 9.8 the concept of resonance
- 9.9 the exception of octate rules

9.1 Lewis dot symbols

- When atoms interact to form chemical bond, only their outer region are in contact
- The Octet Rule: in forming chemical bonds, atoms usually gain, lose or share electrons until they have 8 in the outer shell to reach the same electronic configuration of the noble gasses (ns^{2} $n p^{6}$) (except hydrogen, helium and lithium).
- Lewis Dot Representation: In the representation of an atom, the valence electrons of an atom (outer most shell electrons) are represented by dots.
- There are two main types of chemical bonds: ionic bond and covalent bond.

Lewis Dot Symbols

$\begin{gathered} 1 \\ 1 \mathrm{~A} \end{gathered}$																	$\begin{aligned} & 18 \\ & 8 A \end{aligned}$
- H	$\begin{gathered} 2 \\ 2 A \end{gathered}$											$\begin{aligned} & 13 \\ & 3 A \end{aligned}$	$\begin{aligned} & 14 \\ & 4 A \end{aligned}$	$\begin{aligned} & 15 \\ & 5 A \end{aligned}$	$\begin{aligned} & 16 \\ & 6 A \end{aligned}$	$\begin{aligned} & 17 \\ & 7 A \end{aligned}$	He:
- LI	- Be -											- B	- $\dot{\text { ç }}$.	- N .	- $\ddot{\text { O }}$.	: $\ddot{\text { F. }}$.	:N0.e:
- Na	-Mg.	$\begin{gathered} 3 \\ 3 B \end{gathered}$	$\begin{gathered} 4 \\ 4 B \end{gathered}$	$\begin{gathered} 5 \\ 5 B \end{gathered}$	$\begin{gathered} 6 \\ 6 B \end{gathered}$	$\begin{gathered} 7 \\ 7 B \end{gathered}$		$\begin{gathered} 9 \\ -8 B- \end{gathered}$	10		$\begin{aligned} & 12 \\ & 2 B \end{aligned}$	Al.	- í	- $\ddot{\mathrm{p}}$.	- S .	:C̈\|-	:Är:
- K	- Ca -											-Ga-	Ge-	Äs	Şe-	: Br .	: $\ddot{\mathrm{K}}$:
-Rb	- Sr -											- In.	Sn-	S̈b.	-Te.	: 7 .	: X e :
Cs	-Ba.											- TI•	Pb.	Bï	P.o.	:ät	:Rin:
- Fr	Ra-																

Types of Bonds

Types of Atoms	Type of Bond	Bond Characteristic
metals to nonmetals	Ionic	electrons transferred
nonmetals to nonmetals	Covalent	electrons shared

9.2 the ionic bond

- ionic bond is the electrostatic force that hold ions together in an ionic compound

$$
\begin{aligned}
& { }^{\bullet} \mathrm{Li}+: \bullet_{\mathrm{F}}^{\bullet} \bullet \bullet \mathrm{Li}^{+} \quad \bullet{ }_{\mathrm{F}}^{\bullet}{ }_{\bullet}^{\bullet} \bullet^{-} \\
& 1 s^{2} 2 s^{1} \quad 1 s^{2} 2 s^{2} 2 p^{5} \quad[\mathrm{He}] \quad 1 s^{2} 2 s^{2} 2 p^{6} \quad[\mathrm{Ne}]
\end{aligned}
$$

- the resulting anions \& cations attract each other in such a ratio that the charges cancel out.
- Note: Do not show the charges in the final product. Example: KI NOT K+ \mathbf{I}^{-}

Example: $\mathrm{Ba}^{+2} \& \mathrm{~F}^{-}-$Need two negatives to neutralize +2 charge on barium ion: $\mathrm{Ba}^{+2} \mathrm{~F}^{-1} \mathrm{~F}^{-1}=\mathrm{BaF}_{2}$

Example 9.1

- Use Lewis dot symbol to show formation of $\mathrm{Al}_{2} \mathrm{O}_{3}$

Na .

9.4 the covalent bond

- A covalent bond is a chemical bond in which two or more electrons are shared by two atoms.

Lewis structure of F_{2}

Lewis structure of water

Double bond - two atoms share two pairs of electrons

double bonds $8 \mathrm{e}^{-} 8 \mathrm{e}^{-} 8 \mathrm{e}^{-}$
or

Triple bond - two atoms share three pairs of electrons
or

Polar covalent bond or polar bond is a covalent bond with greater electron density around one of the two atoms

Comparing of the properties of covalent and

ionic

- Covalent compounds are usually gases, liquid and low melting solid
- Ionic compounds are solids at room temperature and high melting point.
- Many ionic compounds are soluble in water, and the resulting aqueous solutions conduct electricity, because the compounds are strong electrolytes.

Electronegativity

- Electronegativity is the ability of an atom to attract toward itself the electrons in a chemical bond.
- High electronegativity \rightarrow pick up electron easily
- Electronegativity increase from left to right in period.
- Electronegativity increase from bottom to up in group .
- Transition metals don't follow these trend.
- Nonmetals have high electronegativity, metals have low electronegativity.
- high difference in electronegativity (2 or more), element tend to form ionic bond. (NaCl)
- small difference in electronegativity, element tend to form polar covelent bond .(HCl)
Same electronegative of the same elements form pure covelent bond $\left(\mathrm{H}_{2}\right)$

Trends in electronegativity across a period The positively charged protons in the nucleus attract the negatively charged electrons. As the number of protons in the nucleus increases, the electronegativity or attraction will increase. Therefore electronegativity increases from left to right in a row in the periodic table. This effect only holds true for a row in the periodic table because the attraction between charges falls off rapidly with distance. The chart shows electronegativities from sodium to chlorine (ignoring argon since it does not does not form bonds).

Trends in electronegativity down a group As you go down a group, electronegativity decreases. (If it increases up to fluorine, it must decrease as you go down.) The chart shows the patterns of electronegativity in Groups 1 and 7.

The Electronegativities of Common Elements

Increasing electronegativity

$>$ Electron Affinity (EA) and electronegativity are related but in different concept
$>($ EA) refers to isolated atoms attraction for additional electron (experimental)
$>\mathrm{EA} \rightarrow$ measurable, Cl is highest
$>$ Electronegativity signifies the ability of an atom in a chemical bond(with another atom) to attract the shared electrons (estimated)
$>$ Electronegativity - relative, F is highest

Electron affinity is defined as the change in energy (in $\mathrm{kJ} / \mathrm{mole}$) of a neutral atom (in the gaseous phase) when an electron is added to the atom to form a negative ion. In other words, the neutral atom's likelihood of gaining an electron.

EXAMPLE 1: GROUP 1 ELECTRON AFFINITIES

This trend of lower electron affinities for metals is described by the Group 1 metals:
Lithium (Li): $60 \mathrm{KJ} \mathrm{mol}^{-1}$
Sodium (Na): $53 \mathrm{KJ} \mathrm{mol}^{-1}$
Potassium (K): $48 \mathrm{KJ} \mathrm{mol}^{-1}$
Rubidium (Rb): $47 \mathrm{KJ} \mathrm{mol}^{-1}$
Cesium (Cs): $46 \mathrm{KJ} \mathrm{mol}^{-1}$
Notice that electron affinity decreases down the group.

EXAMPLE 2: GROUP 17 ELECTRON AFFINITIES

For example, nonmetals like the elements in the halogens series in Group 17 have a higher electron affinity than the metals. This trend is described as below. Notice the negative sign for the electron affinity which shows that energy is released.
Fluorine (F) $-328 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Chlorine (Cl) $-349 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Bromine (Br) $-324 \mathrm{~kJ} \mathrm{~mol}^{-1}$ lodine (I) $-295 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Notice that electron affinity decreases down the group, but increases up with the period.

Variation of Electronegativity with Atomic Number

Example 9.2

- Classify the following bonds as ionic, polar covalent, or covalent
- A) $\mathrm{HCl}=3-2.1=0.9$

Polar covalent
b) $\mathrm{KF}=4-0.8=3.2$ Ionic

- c) $\mathrm{C}-\mathrm{C}=2.5-2.5=0$ covalent
- Classify the following bonds as ionic, polar covalent, or covalent
- A) $\mathrm{CsCl}=3-1=2$ Ionic
b) $\mathrm{H}_{2} \mathrm{~S}=2.5-2.1=0.4$

Polar covalent

- c) $\mathrm{N}-\mathrm{N}=3-3=0$

Covalent
Nonpolarcovalent 0-0.3
Polar covalent $0.4-1.7$ Ionic -greater than 1.8

9.6 Writing Lewis structures

1. Write the skeletal structure of the compounds, using chemical symbol and placing bonded atoms next to one another.

- determine the total number of electrons in the valence shells of all of the atoms of the molecule (A), add electrons (if molecule have net -ve charge, subtract electrons if molecule have net +ve charge)

3. Complete an octet for all atoms except hydrogen (B)
4. Find the number of bonds by $\mathrm{C}=\mathrm{B}-\mathrm{A} / 2$
5. Find the number of lone pair of electron by $\mathrm{D}=\mathrm{A}-\mathrm{C}$

Writing Lewis Structures

$\mathrm{A}=1 \mathrm{X} 1+4 \mathrm{X} 1+5 \mathrm{X} 1=10$ valance electrons

Lewis structure of $\mathbf{H C N}$ consist of 4 bond, 1 triple bond, $\mathbf{0}$ double bond, 2 nonbonding electrons or 1 pair of electrons

NH_{4}^{+}

- Step $2-\mathrm{A}=5 \mathrm{X} 1+1 \mathrm{X} 4-1=8$ valance electrons
- Step $3-B=8 \mathrm{X} 1+2 \mathrm{X} 4=16$ electrons
- Step $4-C=16-8=8 / 2=4$ bonds
- Step $5-\mathrm{D}=8-8=0$ non bonding electrons , 0 pair of electrons

$$
\left(\begin{array}{c}
\mathrm{H} \\
\mathrm{H}-\mathrm{N}-\mathrm{H} \\
\dot{\mathrm{H}}
\end{array}\right)^{+}
$$

Example 9.3

Write the Lewis structure of nitrogen trifluoride $\left(\mathrm{NF}_{3}\right)$.
Step $1-\mathrm{N}$ is less electronegative than F , put N in center
Step $2-\mathrm{A}=5 \mathrm{X} 1+7 \mathrm{X} 3=26$ valance electrons
Step $3-B=8 \mathrm{X} 1+8 \mathrm{X} 3=32$ electrons
Step $4-\mathrm{C}=32-26=6 / 2=3$ bonds
Step 5 - $\mathrm{D}=26-6=20$ nonbonding electrons or 10 pair of electrons

Example 9.3

- Write the Lewis structure of carbon disulfide $\left(\mathrm{CS}_{2}\right)$.
- Step $1-C$ is less electronegative than S, put C in center
- Step $2-\mathrm{A}=4 \mathrm{X} 1+6 \mathrm{X} 2=16$ valance electrons
- Step $3-B=8 X 1+8 X 2=24$ electrons
- Step $4-C=24-16=8 / 2=4$ bonds
- Step $5-\mathrm{D}=16-8=8$ nonbonding electrons or 4 pair of electrons

$$
\stackrel{\ddot{S}}{S}=\mathrm{C}=\ddot{\mathrm{S}}
$$

Example 9.4

- Write the Lewis structure of formic acid (HCOOH).
- Step 1 -put C in center ,surrounded by 2 O atoms, H
- Step $2-\mathrm{A}=4 \mathrm{X} 1+6 \mathrm{X} 2+2 \mathrm{x} 1=18$ valance electrons
- Step $3-\mathrm{B}=8 \mathrm{X} 1+8 \mathrm{X} 2+2 \times 2=28$ electrons
- Step $4-\mathrm{C}=28-18=10 / 2=5$ bonds
- Step $5-\mathrm{D}=18-10=8$ nonbonding electrons or 4 pair of electrons

$$
\begin{gathered}
\text { : O: } \\
\text { H - } \mathrm{C}-\stackrel{\ddot{\mathrm{O}}-\mathrm{H}}{ }
\end{gathered}
$$

Example 9.5

- Write the Lewis structure of carbonate ion $\left[\mathrm{CO}_{3}\right]^{-2}$
- Step $1-\mathrm{C}$ is less electronegative than O , put C in center
- Step $2-\mathrm{A}=4 \mathrm{X} 1+6 \mathrm{X} 3+2=24$ valance electrons
- Step $3-\mathrm{B}=8 \mathrm{X} 1+8 \mathrm{X} 3=32$ electrons
- Step $4-\mathrm{C}=32-24=8 / 2=4$ bonds
- Step $5-\mathrm{D}=24-8=16$ nonbonding electrons or 8 pair of electrons

$$
\begin{gathered}
: O ̣-\mathrm{C}-\mathrm{Ö}: \\
: O \mathrm{O}:
\end{gathered}
$$

Example 9.5

- Write the Lewis structure of Nitrogen dioxide $\left[\mathrm{NO}_{2}\right]^{-1}$
- Step $1-\mathrm{N}$ is less electronegative than O , put N in center
- Step $2-\mathrm{A}=5 \mathrm{X} 1+6 \mathrm{X} 2+1=18$ valance electrons
- Step $3-B=8 \mathrm{X} 1+8 \mathrm{X} 2=24$ electrons
- Step $4-\mathrm{C}=24-18=6 / 2=3$ bonds
- Step $5-\mathrm{D}=18-6=12$ nonbonding electrons or 6 pair of electrons

$$
[: \ddot{\mathrm{O}}-\dot{\mathrm{N}}=\ddot{\mathrm{O}}:]^{-}
$$

9.7 formal charge and Lewis structures

- formal charge is the difference between the number of valence electrons in an isolated atom and the number of electrons assigned to that atom in a Lewis structure.
 charge on an $=$ of valence atom in a Lewis
structure
total number electrons in - of the free atom
$\begin{aligned} & \begin{array}{l}\text { total number } \\ \text { of } \\ \text { nonbonding }\end{array}\end{aligned}-\frac{1}{2}\left(\begin{array}{l}\text { total numbe } \\ \text { of bonding } \\ \text { electrons }\end{array}\right)$ electrons

- For molecules, the sum of the charges should be zero
- For ion, the sum of the charges should be -ve for anions
- For ion , the sum of the charges should be $+v e$ for cations
- formal charge and Lewis structures

1. For neutral molecules, a Lewis structure in which there are no formal charges is preferable to one in which formal charges are present.
2. Lewis structures with large formal charges are less plausible than those with small formal charges.
3. Among Lewis structures having similar distributions of formal charges, the most plausible structure is the one in which negative formal charges are placed on the more electronegative atoms

Which is the most likely Lewis structure for formaldehyde $\mathrm{CH}_{2} \mathrm{O}$

$$
\mathrm{H}-\stackrel{-1}{-1} \begin{array}{r}
+1 \\
= \\
= \\
\mathrm{O}
\end{array}
$$

Which is the most likely Lewis structure for formaldehyde C,HN

$$
\mathrm{H}-\mathrm{C} \equiv \mathrm{~N}:
$$

Example 9.6

- Write the formal charge for the carbonate ion?

-Write the formal charge for the NO_{2} ion?

$$
\begin{array}{cc}
1-\ddot{\mathrm{O}} & \ddot{\mathrm{~N}}=\ddot{\mathrm{O}} \\
\ddot{6} & 5 \\
7 & 5 \\
\hline-1 & 0
\end{array}
$$

9.8 the concept of resonance

- A resonance structure is one of two or more Lewis structures for a single molecule that cannot be represented accurately by only one Lewis structure (after formal charge has been determined).
- More possible structures gives the overall structure more validity.

Ozone

$$
\ddot{O}=\ddot{O}-\ddot{O}:-\ddot{\square} \longrightarrow+\ddot{O}=\ddot{O}
$$

Benzene

What are the resonance structures of the carbonate $\left(\mathrm{CO}_{3}{ }^{2}-\right)$ ion?

Example 9.8

- Draw three resonance structure for N2O (NNO), indicate formal charge rank the structures.
$: \stackrel{\rightharpoonup}{\mathrm{N}}=\stackrel{+}{\mathrm{N}}=\mathrm{O} \mathrm{O}$:

556

646
$-1 \quad 1 \quad 0$

$\begin{array}{lllll}5 & 5 & 6 & 5 & 6\end{array}$

$$
\left.\begin{array}{cccccc}
5 & 4 & 7 & & 7 & 4
\end{array}\right) 5
$$

$\mathrm{B}>\mathrm{A}>\mathrm{C}$

9.9 the exception of octate rules

- There are three types of ions or molecules that do not follow the octet rule:
- Ions or molecules with an odd number of electrons
- Ions or molecules with less than an octet (the incomplete Octet)
- Ions or molecules with more than eight valence electrons (an expanded octet)

Ions or molecules with an odd number of electrons

- Though relatively rare and usually quite unstable and reactive, there are ions and molecules with an odd number of electrons(radical).

$$
\text { NO } \begin{gathered}
\begin{array}{l}
N-5 \mathrm{e}^{-} \\
\mathrm{O}-6 \mathrm{e}^{-}
\end{array} 11 \mathrm{e}^{-}
\end{gathered} \quad \stackrel{(N}{=}=0
$$

The incomplete Octet

- Covalent compounds containing Group 3 atoms may be satisfied with 6 valence electrons

An expanded octet

- Usually occurs in element in $3^{\text {rd }}$ period and beyond
- More than 4 bonds
- Elements \geq row 3 can use $\mathrm{s}, \mathrm{p} \& \mathrm{~d}$ orbitals and have $>8 \mathrm{VE}$
- P: 8 OR 10
- S: 8, 10, OR 12
- Xe: 8, 10, OR 12
- Examples
$\mathrm{SF}_{6} \quad \mathrm{PF}_{5} \quad \mathrm{XeF}_{4}$

Example 9-9

- Write Lewis structure AlI_{3}
- Write Lewis structure BeF_{2}

$$
\ddot{:} \mathrm{F}-\mathrm{Be}-\ddot{\mathrm{F}}:
$$

Example 9-10

- Write Lewis structure PF_{5}

- Write Lewis structure AsF_{5}

Example 9-1 1

- Write Lewis structure $\left[\mathrm{SO}_{4}\right]^{-2}$

$$
\begin{gathered}
: 0: \\
\hdashline-5-9 \\
: O
\end{gathered}
$$

- Write Lewis structure $\mathrm{H}_{2} \mathrm{SO}_{4}$

[^0]: *The boiling point of HCN is $26^{\circ} \mathrm{C}$, but it is close enough to qualify as a gas at ordinary atmospheric conditions.

